Personal Websites

Alexander Shapeev

I have graduated from Novosibirsk State University in 2001 with Bachelor degree and in 2003 with Master degree. Then I went to Singapore and defended my PhD (National University of Singapore, 2009) on this topic of computational fluid mechanics.

After that I have change the topic of my research to multiscale modelling and stay roughly within this field. Over the past few years my main topic was coupling atomistic and continuum models of solids; my work has been award the 2013 SIAM Outstanding Paper Prize.

Now my main project is on development and practical applications of models of interatomic interaction (aka interatomic potentials) with a multidisciplinary approach that combines ideas from computational mathematics, machine learning and physics and has applications in materials science, physics, and chemistry.

You can find more info on my website, including publications.

Read about my research on my website

See my publications on my website

2013 SIAM Outstanding Paper Prize

Max Ludwig Hodapp
Research Scientist
Evgeny Podryabinkin
Research Scientist
Ivan Novikov
Junior Research Scientist
Egor Vetkin
Research Intern

Multiscale Methods / Numerical Methods for Partial Differential Equations
Number of ECTS credits: 6
Course Classification: Science, Technology, and Engineering

Course description:
Multiscale modelling is a methodology that considers phenomena at various scales of a problem to achieve better accuracy. Multiscale problems include modelling composites with their microscructure, porous flows (e.g., in oil extraction), or motion of defects in solids. This course will introduce a number of multiscale problems, will review a homogenization method of solving some of such problems, then focus on numerical methods.

The Skoltech’s “Numerical Methods for Partial Differential Equations” (Term 3) is a strongly suggested (but not compulsory) prerequisite and “Introduction to Numerical Simulation” (Term 2) is a suggested prerequisite.

Fast Methods for Partial Differential and Integral Equations
Number of ECTS credits: 6
Course Classification: Science, Technology, and Engineering

Course Description:
The course covers numerical methods for partial differential equations (PDEs). The focus on (a subset of) prototypical examples of elliptic, parabolic, and hyperbolic PDEs, and on the methods of finite differences and finite elements. The students will be exposed to notions of approximation, stability, and accuracy.

Intended Learning Outcomes:
Upon completion of this course, the student will be able to:
For various types of PDEs, propose suitable numerical methods and implement them.
Assess stability and accuracy of numerical methods

ФИО: Шапеев Александр Васильевич

Занимаемая должность (должности): Старший Преподаватель

Преподаваемые дисциплины: Быстрые методы решения дифференциальных и интегральных уравнений

Ученая степень: Ph.D., вычислительная математика, 2009, Национальный Университет Сингапура

Ученое звание (при наличии): нет

Наименование направления подготовки и/или специальности: Вычислительная математика

Данные о повышении квалификации и/или профессиональной переподготовке (при наличии): нет

Общий стаж работы: 13 лет

Стаж работы по специальности: 13 лет