Mikhail Pugach

Senior Research Scientist
Center for Energy Science and Technology

Supervisor: Alexei Buchachenko

Mikhail Pugach is a senior research scientist at the Center for Energy Science and Technology at Skoltech. Following a M.Sc. degree in Applied Mathematics and Physics in 2015 at Moscow Institute of Physics and Technology (MIPT), he received PhD in “Engineering Systems” at Skoltech in 2020, had several internships in The University of Manchester (UK), University of Pisa (Italy) and Landshut University of Applied Science (Germany). Mikhail is leading the research in the field of new generation energy storage systems focusing on their modeling, design optimization and control.

Михаил Пугач — старший научный сотрудник Сколтеха, PhD (Сколтех) в области инженерных систем, проходил научно-исследовательскую практику в University of Manchester (UK), University of Pisa (Италия) и  Landshut University of Applied Science  (Германия), а также преподавал в российских университетах (МФТИ, Сколтех). Михаил руководит исследованиями в области систем хранения и преобразования энергии для электрических сетей нового поколения,  уделяя особое внимание их моделированию, оптимизации и управлению. 

Research area: energy storage systems

Energy-dense and Durable Nonaqueous Redox Flow Batteries enabled by Flowing Solid-state Capacity Boosters




  1. Bogdanov S, Pugach M, Parsegov S, Vlasov V, Ibanez FM, Stevenson KJ, et al. Dynamic modeling of vanadium redox flow batteries : Practical approaches , their applications and limitations. J Energy Storage n.d.:106191. https://doi.org/10.1016/j.est.2022.106191. (Q1, impact factor 8.8)
  2. Parsegov S, Pugach M, Polyakov A, Ibáñez F. Analysis of Flow Factor Control Strategy in Vanadium Redox Flow Batteries. IFAC-PapersOnLine 2022;55:187–92. https://doi.org/10.1016/j.ifacol.2022.07.033.
  3. Ali MH, Slaifstein D, Ibanez FM, Zugschwert C, Pugach M. Power Management Strategies for Vanadium Redox Flow Battery and Supercapacitors in Hybrid Energy Storage Systems. IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) | 978-1-6654-8032-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISGT-Europe54678.2022.9960352
  4. Kurilovich A., Pugach M., Ryzhov A., Peljo P., Gonzalez G., Stevenson K. Organic Redox Flow Batteries: Insights from Experimental and Numerical Study, 241st ESC meeting, Vancouver, Canada, 2022, DOI 10.1149/MA2022-01482020mtgabs
  5. Kurilovich A., Trovo A., Pugach M., Stevenson K., Gurnierri M. Prospect of modeling industrial scale flow batteries – from experimental data to accurate overpotential indentification. Renew Sustain Energy Rev, 2022, №167, https://doi.org/10.1016/j.rser.2022.112559. (Q1, impact factor 18.9)
  6. Pugach M, Parsegov S, Gryazina E, Bischi A. Output feedback control of electrolyte flow rate for Vanadium Redox Flow Batteries. J Power Sources 2020;455:227916. doi:10.1016/j.jpowsour.2020.227916. (Q1, impact factor 9.4)
  7. Pugach M, Vyshinsky V, Bischi A. Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system. Appl Energy 2019;253:113533. doi:10.1016/j.apenergy.2019.113533. (Q1, impact factor 11.3)
  8. Pugach M, Kondratenko M, Briola S, Bischi A. Zero dimensional dynamic model of vanadium redox fl ow battery cell incorporating all modes of vanadium ions crossover. Appl Energy 2018;226:560–9. doi:10.1016/j.apenergy.2018.05.124. (Q1, impact factor 11.3)
  9. Gorskii V, Kovalskii M, Pugach M. Novel Engineering Method of Calculation of Heat Transfer in a Laminar-Turbulent Boundary Layer, Journal of Engineering Physics and Thermophysics 2018, doi: 10.1007/s10891-018-1863-3
  10. Pugach M, Kondratenko M, Briola S, Bischi A. Numerical and experimental study of the flow-by cell for Vanadium Redox Batteries. Energy Procedia 2017;142:3667–74. doi:10.1016/j.egypro.2017.12.260.
  11. Pugach M, Ryzhov A, Fedorov A. Estimation of the effect of free-stream turbulence and solid particles on the laminar-turbulent transition at hypersonic speeds. TsAGI Science Journal 2016, doi: 10.1615/TsAGISciJ.2016017056
  12. Gorskii, V, Pugach M. Comparison of calculated and experimental data on laminar-turbulent heat transfer on the hemisphere surface streamlined by a supersonic air flow. High Temperature, 53(2). doi:10.1134/S0018151X15020108


Development of a sustainable hybrid storage system based on high power vanadium redox flow battery and supercapacitor – technology (HyFLow, Horizon 2020)

Computer aided desing for next generation flow batteries (CompBat, Horizon 2020)