evgenychuvilin



Personal Websites

https://www.researchgate.net/profile/Evgeny-Chuvilin

Scopus Author ID: 6602176146

ResearcherID: I-2057-2016

ORCID: 0000-0003-1173-546X

https://elibrary.ru/author_counter_click.asp?id=63403

IstinaResearcherID (IRID): 491357

https://scholar.google.hn/citations?hl=ru&user=nT8niBIAAAAJ

Evgeny Chuvilin

In 1980 Chuvilin E.M. graduated Geocryology Department of the Geological Faculty of Moscow State University. From 1980 to 1983 he continued the study as a Ph.D. student at the Geological Faculty. After successful graduation, he was assigned to the Department of Geocryology of Moscow State University, where he worked as a Junior Research Scientist (1983-1987), Research Scientist (1987-1988), Assistant (1988-1989), and Leading Research Scientist (1989-1993). From 1993 to 2018, he worked as an Associate Professor at the Department of Geocryology, where he developed and taught a number of training courses dedicated to general geocryology, physical chemistry and petrography of frozen rocks, gases and gas hydrates in the permafrost zone, and also conducted practical exercises on these courses. Along with working at Moscow State University for part-time work at 0.5 rates, he worked as Senior Research Scientist at the Schlumberger Moscow Research Center (2006-2015), as well as a Leading Research Scientist at the Skoltech Hydrocarbon Production Center (2014-2017). From 2018 to the present, he has been working full-time as a Leading Research Scientist at the Skoltech Center for Hydrocarbon Recovery.

The area of scientific interests of Chuvilin E.M. is physical chemistry and petrography of frozen and hydrate saturated rocks, gases and gas hydrates in the permafrost zone, experimental modeling of hydrate and ice formation processes in rocks, investigation of the properties of frozen and hydrate saturated rocks, migration of organic and mineral pollutants in the permafrost zone. With his participation and under his leadership, experimental technologies have been developed to study the processes of ice and hydrate formation in freezing and frozen rocks and their influence on the properties of rocks. He was a participant in the discovery of the self-preservation effect of gas hydrates at low temperatures (1988). Chuvilin E.M. has more than 300 publications (including articles in high-ranking journals, paragraphs, and sections in monographs and textbooks), as well as 21 patents for inventions. Currently, he has the following scientific activity indices Scopus -27, WoS -24.

Chuvilin E.M. was the head of many grants of the Russian Foundation for Basic Research, Russian Science Foundation, CRDF, as well as Russian and international scientific projects, including projects with Gazprom, Total, and the Geological Survey of Canada. He repeatedly traveled abroad to participate in joint scientific research, conferences, and seminars (USA, Canada, Japan, China, UK, Norway, Germany, Belgium, etc.). In 1996, he worked for several months in Canada (Carleton University and the Geological Survey of Canada), where he was engaged in gas hydrate research. A year and a half (2001-2002) he worked in the Gas Hydrate Laboratory at The National Institute of Advanced Industrial Science and Technology (Sapporo).

Under his leadership, 59-student diplomas, as well as 11 PhD dissertations, were defended. Currently, he is the head of the Laboratory of Permafrost and Gas Hydrates at the Center for Hydrocarbon Recovery, as well as the supervisor of dissertations and master’s theses at Skoltech and Moscow State University, and he teaches the Permafrost and Gas hydrates course for undergraduates at Skoltech.

Supervisor: Mikhail Spasennykh

 

Research Area

Experimental, theoretical and field studies on permafrost and gas hydrates in the oil and gas production regions in the Arctic and on the Arctic shelf

Projects

  • RNF (Russian Science Foundation) grant for experimental modeling of the interaction of frozen hydrate–containing sediments with salt solutions and cryopegs (2022-2024) -Leader
  • RNF (Russian Science Foundation) grant for prediction of property changes for frozen hydrate sediments during the development of hydrocarbon deposits in the Arctic (2021-2024) – Team member

LIST OF REFERRED PUBLICATIONS IN SCOPUS & WOS

  1. Chuvilin E.M., Grebenkin S.I., Zhmaev M.V. 2024. Experimental modeling of gas filtration in frozen and hydrate containing rocks ubder uniaxial compression conditions. Earth’s Cryosphere, 28 (6)
  2. Chuvilin E., Grebenkin S., Zhmaev M. 2024. Gas flow in frozen hydrate-bearing sediments exposed to compression and high-pressure gradients: Experimental modeling. Cold Regions Science and Technology, 228, 104310, DOI: 10.1016/j.coldregions.2024.104310
  3. Chuvilin E., Grebenkin S., Zhmaev M. 2024. Gas flow in frozen hydrate-bearing sediments exposed to compression and high-pressure gradients: Experimental modeling. Cold Regions Science and Technology, 228, 104310, DOI: 10.1016/j.coldregions.2024.104310
  4. Zhou X., Fan S., Xu C., Wen H., Chuvilin E., Liang D. 2024. Effect of Particle Size, Water Saturation, Inorganic Salt and Methane on the Phase Equilibrium of CO2 Hydrates in Sediments. Fluid Phase Equilibria, 588, 114234, DOI: 10.1016/j.fluid.2024.114234
  5. Istomin V.A., Sergeeva D.V., Chuvilin E.M., Bukhanov B.A., Sokolova N.S. 2024. Method of rapit estimation of the effect of the hydrate-forming gas pressure on nonclathrated water content in soils. Earth’s Cryosphere, 28 (4)
  6. Liu Y., Liu J., Jia W., Bai Y., Hou J., Xu H., Zhao E., Chen L., Guo T., He J., Zhang L., Chuvilin E. 2024. Numerical simulation of the development of hydrate-bearing layers by depressurization of radial wells. Natural Gas Industry B, 11,3, DOI: 10.1016/j.ngib.2024.05.003
  7. Zhou X., Xu C., Wen H., Huang Z., Chuvilin E., Liang D. 2024. Thermal Stabilities of CH4 and CO2 Hydrates in Quartz Sands and Modeling. Fluid Phase Equilibria, 114120, DOI: 10.1016/j.fluid.2024.114120
  8. Ramazanov M.M., Bulgakova N.S., Lobkovsky L.I., Chuvilin E.M., Davletshina D.A., Shakhova N.E. 2024. Dissociation Kinetics of Methane Hydrate in Frozen Rocks under Decreasing External Pressure: Mathematical and Experimental Modeling. Transactions (Doklady) of the Russian Academy of Sciences. Earth Science Sections. DOI: 10.1134/S1028334X24601391
  9. Liu Y., Li G., Chen J., Bai Y., Hou J.., Xu H., Zhao E., Chen Z., He J., Zhang L., Cen X., Chuvilin E. 2023. Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models. Energy, 263, 126146, 10.1016/j.energy.2022.126146
  10. Chuvilin E.M., Ekimova V.V., Davletshina D.A., Bukhanov B.A., Krivokhat E.O. 2023. Salt transfer in frozen methane hydrate-containing sediments during their interaction with salt solutions. Earth’s Cryosphere, 24 (6): 40-50; DOI: 10.15372/ KZ20230604. EDN: PGVRUO.
  11. Chuvilin E., Davletshina D., Bukhanov B., Grebenkin S. 2023. Thermal conductivity of frozen and unfrozen gas-saturated soils. Geosciences, 13(11), 347; DOI: 10.3390/geosciences13110347
  12. Chuvilin E., Davletshina D., Bukhanov B., Grebenkin S., Pankratova E. 2023. Thermal conductivity variations in frozen hydrate-bearing sand upon heating and dissociation of pore gas hydrate. Geosciences,13(10), 316; DOI: 10.3390/geosciences13100316
  13. Bukhanov B., Chuvilin E., Zhmaev M., Shakhova N., Spivak E., Dudarev O., Osadchiev A., Spasennykh M., Semiletov, I. 2023. In situ bottom sediment temperatures in the Siberian Arctic seas: Current state of subsea permafrost in the Kara Sea vs Laptev and East Siberian seas. Marine and Petroleum Geology, 157, 106467; DOI: 10.1016/j.marpetgeo.2023.106467
  14. Chuvilin E., Ekimova V., Davletshina D., Bukhanov B., Krivokhat E. 2023. Migration of salt ions in frozen hydrate-saturated sand: effect of silt and clay particles. Energy & Fuels, 37, 7, 5331–5340; DOI: 10.1021/acs.energyfuels.3c00274
  15. Liu Y., Li G., Chen J., Bai Y., Hou J., Xu H., Zhao E., Chen Z., He J., Zhang L., Cen X., Chuvilin E. 2023. Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models. Energy, 263, Part E, 126146; DOI: 10.1016/j.energy.2022.126146
  16. Chuvilin E., Sokolova N. 2023. Permafrost and gas hydrate response to ground warming. Geosciences, 13(9), 281; DOI: 10.3390/geosciences13090281
  17. Chuvilin E., Sokolova N., Bukhanov B. 2022. Changes in Unfrozen Water Contents in Warming Permafrost Soils. Geosciences, 12, 6, DOI: 10.3390/geosciences12060253
  18. Bukhanov B., Chuvilin E., Mukhametdinova A., Sokolova N., Afonin M., Istomin V. 2022. Estimation of Residual Pore Water Content in Hydrate-Bearing Sediments at Temperatures below and above 0 °C by NMR. Energy and Fuels, 36, 24, 14789–14801, DOI: 10.1021/acs.energyfuels.2c03089
  19. Chuvilin E., Davletshina D., Bukhanov B., Mukhametdinova A., Istomin V. 2022. Formation of Metastability of Pore Gas Hydrates in Frozen Sediments: Experimental Evidence. Geosciences, 12, 11 DOI: 10.3390/geosciences12110419
  20. Chuvilin E. M., Bukhanov B. A., Mukhametdinova A. Z., Grechishcheva E. S., Alekseev A. G., Istomin V. A. 2022. Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. Cold Regions Science and Technology, 196, 103488, DOI: 10.1016/j.coldregions.2022.103488
  21. Chuvilin E., Sokolova N. 2022. Gas Emission and Formation of Craters in the Arctic Permafrost Synopsis. Geosciences, 12, 46, DOI: 10.3390/geosciences12020046
  22. Chuvilin E., Zhmaev M., Grebenkin S. 2022. Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates. Geosciences, 12, № 9 DOI: 10.3390/geosciences12090321
  23. Buddo I., Misyurkeeva N., Shelokhov I., Chuvilin E., Chernikh A., Smirnov A. 2022. Imaging Arctic Permafrost: Modeling for Choice of Geophysical Methods. Geosciences, 12, 10 DOI: 10.3390/geosciences12100389
  24. Chuvilin E., Bukhanov B., Yurchenko A., Davletshina D., Shakhova N., Spivak E., Rusakov V., Dudarev O., Khaustova N., Tikhonova A., Gustafsson O., Tesi T., Martens J., Jakobsson M., Spasennykh M., Semiletov I. 2022. In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments: Key input for understanding the dynamics of subsea permafrost. Marine and Petroleum Geology, 138, 105550, DOI: 10.1016/j.marpetgeo.2022.105550
  25. Chuvilin E., Ekimova V., Davletshina D., Bukhanov B., Krivokhat E., Shilenkov V. 2022 Migration of Salt Ions in Frozen Hydrate-Saturated Sediments: Temperature and Chemistry Constraints. Geosciences, 12, 276, DOI: 10.3390/geosciences12070276
  26. Chuvilin E., Ekimova V., Davletshina D., Krivokhat E., Shilenkov V., Bukhanov B. 2022 Pressure Influence on Salt Migration in Frozen Hydrate-Saturated Sediments: Experimental Modeling. Energy and Fuels, 36, 18, 10519–10528DOI: 10.1021/acs.energyfuels.2c01282
  27. Chuvilin E., Tipenko G., Bukhanov B., Istomin V., Pissarenko D. 2022. Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. Geosciences, 12, 115, DOI: 10.3390/geosciences12030115
  28. Chuvilin E., Ekimova V., Davletshina D., Bukhanov B., Krivokhat E., Shilenkov V. 2022. Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling. Geosciences, 12, 261, DOI: 10.3390/geosciences12070261
  29. Chuvilin E.M., Sokolova N.S., Bukhanov B.A., Davletshina D.A., Spasennykh M.Y. 2021. Formation of Gas-Emission Craters in Northern West Siberia: Shallow Controls. Geosciences, 11,393, DOI: 10.3390/geosciences11090393
  30. Chuvilin E., Grebenkin S., Zhmaev M. 2021. Gas Permeability of Sandy Sediments: Effects of Phase Changes in Pore Ice and Gas Hydrates. Energy and Fuels, 35, 9, 7874–7882, DOI: 10.1021/acs.energyfuels.1c00366
  31. Chuvilin E., Bukhanov B., Grebenkin S., Tumskoy V., Shakhova N., Dudarev O., Semiletov I., Spasennykh M. 2021. Thermal properties of sediments in the East Siberian Arctic seas: A case study in the Buor-Khaya Bay. Marine and Petroleum Geology, Volume 123, January 2021, 104672, DOI: 10.1016/j.marpetgeo.2020.104672
  32. Chuvilin E.M., Sokolova N.S., Bukhanov B.A., Istomin V.A., Mingareeva G.R. 2020.Temperature beginning of freezing determination based on pore water potential measurements. Earth’s Cryosphere, 24 (6)
  33. Chuvilin E.M., Sokolova N.S., Bukhanov B.A., Shevchik F.A., Istomin V.A., Mukhametdinova A.Z., Alekseev A.G., Grechishcheva E.S. 2020. Application of water-potentiometric method for unfrozen water content determination in different frozen soils. Earth’s Cryosphere, 24 (5): 44-50
  34. Chernykh D., Yusupov V., Salomatin A., Kosmach D., Shakhova N., Gershelis E., Konstantinov A., Grinko A., Chuvilin E., Dudarev O., Koshurnikov A., Semiletov I. 2020. Sonar estimation of methane bubble flux from thawing subsea permafrost: A case study from the Laptev Sea shelf. Geosciences, 10, 411, DOI: 10.3390/geosciences10100411
  35. Chuvilin E., Ekimova V., Davletshina D., Sokolova N., Bukhanov B. 2020. Evidence of gas emissions from permafrost in the Russian arctic. Geosciences, 10, 383; DOI: 10.3390/geosciences10100383
  36. Chuvilin, E.; Stanilovskaya, J.; Titovsky, A.; Sinitsky, A.; Sokolova, N.; Bukhanov, B.; Spasennykh, M.; Cheremisin, A.; Grebenkin, S.; Davletshina, D.; Badetz, C. 2020. A gas-emission crater in the Erkuta river valley, Yamal peninsula: characteristics and potential formation model. Geosciences, 10, 170; DOI: 10.3390/geosciences10050170
  37. Chuvilin, E.; Sokolova, N.; Davletshina, D.; Bukhanov, B.; Stanilovskaya, J.; Badetz, C.; Spasennykh, M. 2020. Conceptual models of gas accumulation in the shallow permafrost of northern West Siberia and conditions for explosive gas emissions. Geosciences, 10, 195; DOI: 10.3390/geosciences10050195
  38. Istomin, V.; Chuvilin, E.; Sergeeva, D.; Bukhanov, B.; Badetz, C.; Stanilovskaya, Y. 2020. Thermodynamics of freezing soil closed system saturated with gas and water. Cold Regions Science and Technology, 170; DOI: 10.1016/j.coldregions.2019.102901
  39. Davletshina D., Chuvilin E. 2020. Estimation of potential gas hydrate formation in finely dispersed soils at negative temperatures: Experimental modeling. Earth’s Cryosphere, 24(4):25-33, DOI: 10.21782/KZ1560-7496-2020-4(25-33)
  40. Chuvilin E.M., Davletshina D.A., Bukhanov B.A., Grebenkin S.I., Ogienko M.V., Badetz Ch., Stanilovskaya J.V. 2020. Influence of the composition and pressure of gas on the thermophysical properties of gas-saturated frozen and thawing sands. Earth’s Cryosphere, 24(1):49-54; DOI: 10.21782/EC2541-9994-2020-1(49-54)
  41. Chuvilin E.M. Grebenkin S.I., Davletshina D.A., Zhmaev M.V. 2020.Influence of the gas permeability of frozen sediments during hydrate formation. Earth’s Cryosphere, 24(2):34-40; DOI: 10.21782/EC2541-9994-2020-2(34-40)
  42. Hassanpouryouzband A., Yang J., Okwananke A., Burgass R., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. 2019. An Experimental Investigation on the Kinetics of Integrated Methane Recovery and CO2 Sequestration by Injection of Flue Gas into Permafrost Methane Hydrate Reservoirs. Scientific Reports, 9:16206, DOI:10.1038/s41598-019-52745-x
  43. Chuvilin E.M., Davletshina, D.A., Bukhanov B.A., Grebenkin S.I. , Istomin V.A., Sergeeva D.V., Badetz Ch., Stanilovskaya J.V. 2019. Experimental study of the influence of gas composition and gas pressure on the freezing temperature of pore water in gas saturated sediments. Earth’s Cryosphere, 23 (5): 49-57, DOI: 10.21782/KZ1560-7496-2019-5(49-57)
  44. Chuvilin E.M., Davletshina D.A., Lupachik M.V. 2019. Hydrate formation in frozen and thawing methane saturated sediments. Earth’s Cryosphere, 23 (2): 50–61, DOI: 10.21782/KZ1560-7496-2019-2(50-61).
  45. Vorobyev S., Bychkov A., Khilimonyuk V., Buldovicz S., Ospennikov E., Chuvilin E. 2019. Formation of the Yamal crater in Northern West Siberia: Evidence from geochemistry Geosciences, 9 (12); DOI: 10.3390/geosciences9120515
  46. Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. 2019. Geological CO2 capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition / ACS sustainable chemistry & engineering. DOI: 10.1021/acssuschemeng.8b06374
  47. Yang J., Hassanpouryouzband A., Tohidi B., Chuvilin E., Bukhanov B., Istomin V., Cheremisin A. 2019. Gas hydrates in Permafrost: Distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate‐bearing permafrost sediments / Journal of Geophysical Research-Solid Earth. DOI: 10.1029/2018JB016536
  48. 38. Chuvilin E., Bukhanov B. 2019. Thermal Conductivity of Frozen Sediments Containing Self-Preserved Pore Gas Hydrates at Atmospheric Pressure: An Experimental Study. Geosciences, v 9, № 2 DOI: 10.3390/geosciences9020065
  49. Okwananke A., Hassanpouryouzband, A., Vasheghani Farahani M., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. 2019. Methane recovery from gas hydrate-bearing sediments: An experimental study on the gas permeation characteristics under varying pressure. Journal of Petroleum Science and Engineering, 180: 435-444; DOI: 10.1016/j.petrol.2019.05.060
  50. Chuvilin E., Davletshina D., Ekimova V., Bukhanov B., Shakhova N., Semiletov I. 2019. Role of warming in destabilization of intrapermafrost gas hydrates in the arctic shelf: Experimental modeling. Geosciences, 9(10), 407; DOI: 10.3390/geosciences9100407
  51. Chuvilin E., Ekimova V., Bukhanov B., Grebenkin S., Shakhova N., Semiletov I. 2019. Role of salt migration in destabilization of intra permafrost hydrates in the arctic shelf: Experimental modeling. Geosciences, 9(4), 188; DOI: 10.3390/geosciences9040188
  52. Hassanpouryouzband A., Farahani M., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. 2019. Solubility of flue gas or carbon dioxide-nitrogen gas mixtures in water and aqueous solutions of salts: experimental measurement and thermodynamic modeling. Industrial & Engineering Chemistry Research, 58 (8): 3377–3394; DOI: 10.1021/acs.iecr.8b04352
  53. Chuvilin E., Bukhanov B. 2019. Thermal conductivity of frozen sediments containing self-preserved pore gas hydrates at atmospheric pressure: an experimental study. Geosciences, 9 (2); DOI: 10.3390/geosciences9020065
  54. Shakhova N., Semiletov I., Chuvilin E. 2019. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf. Geosciences, 9 (6); DOI: 10.3390/geosciences9060251
  55. Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., and Cheremisin A. 2018. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions. Environmental Science and Technology. DOI: 10.1021/acs.est.7b05784
  56. Buldovicz S.N., Khilimonyuk V.Z., Bychkov A.Y., Ospennikov E.N., Vorobyev S.A., Gunar A.Y., Gorshkov E.I., Chuvilin E.M., Cherbunina M.Y., Kotov P.I., Lubnina N.V., Motenko R.G., Amanzhurov R.M. 2018. Cryovolcanism on the Earth: Origin of a Spectacular Crater in the Yamal Peninsula (Russia). Scientific reports, 8; DOI: 10.1038/s41598-018-31858-9
  57. Chuvilin E.M., Grebenkin S.I. 2018. Dissociation of gas hydrates in frozen sands: effect of gas permeability. Earth’s Cryosphere, 22 (1): 44-50; DOI: 10.21782/KZ1560-7496-2018-1(44-50)
  58. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. 2018. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences, 8(12); DOI: 10.3390/geosciences8120431
  59. Chuvilin E., Davletshina D. 2018. Formation and Accumulation of Pore Methane Hydrates in Permafrost: Experimental Modeling.Geosciences, 8 (12); DOI: 10.3390/geosciences8120467
  60. Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., Cheremisin A. 2018. Insights into CO2 capture by flue gas hydrate formation: gas composition evolution in systems containing gas hydrates and gas mixtures at stable pressures. ACS Sustainable Chemistry & Engineering, 6 (5): 5732-5736; DOI: 10.1021/acssuschemeng.8b00409
  61. Chuvilin E., Bukhanov B., Grebenkin S., Doroshin V., Iospa A. 2018. Shear strength of frozen sand with dissociating pore methane hydrate: an experimental study. Cold Regions Science and Technology, 153: 101–105; DOI: 10.1016/j.coldregions.2018.04.013
  62. Chuvilin E.M., Bukhanov B. 2017. Effect of hydrate accumulation conditions on thermal conductivity of gas-saturated soils. Energy & Fuels, 31 (5): 5246–5254, DOI: http://dx.doi.org/10.1021/acs.energyfuels.6b02726
  63. Yang J., Okwananke A., Tohidi B., Chuvilin E., Maerle K., Istomin V., Bukhanov B., Cheremisin A. 2017. Flue gas injection into gas hydrate reservoirs for methane recovery and CO2 sequestration. Energy Conversion and Management, 136, 431–438, DOI: 10.1016/j.enconman.2017.01.043
  64. Okwananke A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., Cheremisin A. 2018. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen. J. Chem. Thermodynamics, 117: 138–146. Doi: 10.1016/j.jct.2017.09.028
  65. Istomin V.A., Chuvilin E.M., Bukhanov B.A. 2017. Fast estimation of unfrozen water content in frozen soils. Earth’s Cryosphere, 21 (1): 134-139
  66. Istomin V., Chuvilin E., Bukhanov B., Uchida T. 2017. Pore water content in equilibrium with ice or gas hydrate in sediments. Cold Regions Science and Technology, 137: 60-67. DOI: 10.1016/j.coldregions.2017.02.005
  67. Loktev A. S., Tokarev M. Y., Chuvilin E.M. 2017. Problems and technologies of offshore permafrost investigation. Procedia Engineering. — Vol. 189. — P. 459–465. Doi:10.1016/j.proeng.2017.05.074
  68. Kraev G, Schulze E., Kholodov Al., Chuvilin E., Rivkina E. 2017. Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere. 8 (6) Doi:10.3390/atmos8060105
  69. Chuvilin, E., Guryeva, O. 2015. The role of hydrate formation processes in industrial CO2 sequestration in permafrost area. Petroleum Abstracts, 55 (48), p. 96
  70. Istomin, V.A., Chuvilin, E.M., Bukhanov, B.A. 2015. Evaluation of equilibrium water content in hydrate saturated porous media. Geomodel 2015 – 17th Scientific-Practical Conference on Oil and Gas Geological Exploration and Development, pp. 265-269
  71. Chuvilin, E.M., Bukhanov, B.A. 2014. Variation in the thermal conductivity of gas-saturated sediments during hydrate formation and freezing-melting. Part 2. Results of researches. Earth’s Cryosphere, 18 (2), pp. 57-65
  72. Chuvilin, E.M., Bukhanov, B.A. 2014. Variation in the thermal conductivity of gas-saturated sediments during hydrate formation and freezing-melting. Part 1. Method of researches. Earth’s Cryosphere, 18 (1), pp. 70-76
  73. Takeya, S., Fujihisa, H., Gotoh, Y., Istomin, V., Chuvilin, E., Sakagami, H., Hachikubo, A. Methane clathrate hydrates formed within hydrophilic and hydrophobic media: Kinetics of dissociation and distortion of host structure (2013) Journal of Physical Chemistry C, 117 (14), pp. 7081-7085. DOI: 10.1021/jp312297h
  74. Chuvilin, E.M., Bukhanov, B.A. 2013. Experimental study of the thermal conductivity of frozen hydrate-saturated sediments at atmospheric pressure. Earth’s Cryosphere, 17 (1), pp. 69-79
  75. Chuvilin, E.M., Bukhanov, B.A., Tumskoy, V.E., Shakhova, N.E., Dudarev, O.V., Semiletov, I.P. 2013. Thermal conductivity of bottom sediments in the Region of Buor-Khaya Bay (shelf of the Laptev Sea). Earth’s Cryosphere, 17 (2), pp. 32-40
  76. Chuvilin, E.M., Tumskoy, V.E., Tipenko, G.S., Gavrilov, A.V., Bukhanov, B.A., Tkacheva, E.V., Audibert-Hayet, A., Cauquil, E. 2013. Relic gas hydrate and possibility of their existence in permafrost within the South-Tambey gas field. Society of Petroleum Engineers – SPE Arctic and Extreme Environments Conference and Exhibition, AEE 2013, 3, pp. 1945-1962
  77. Sergienko, V.I., Lobkovskii, L.I., Semiletov, I.P., Dudarev, O.V., Dmitrievskii, N.N., Shakhova, N.E., Romanovskii, N.N., Kosmach, D.A., Nikol’Skii, D.N., Nikiforov, S.L., Salomatin, A.S., Anan’Ev, R.A., Roslyakov, A.G., Salyuk, A.N., Karnaukh, V.V., Chernykh, D.B., Tumskoi, V.E., Yusupov, V.I., Kurilenko, A.V., Chuvilin, E.M., Bukhanov, B.A. 2012. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the Methane Catastrophe: Some results of integrated studies in 2011. Doklady Earth Sciences, 446 (1), pp. 1132-1137. DOI: 10.1134/S1028334X12080144
  78. Hachikubo, A., Takeya, S., Chuvilin, E., Istomin, V. Preservation phenomena of methane hydrate in pore spaces (2011) Physical Chemistry Chemical Physics, 13 (39), pp. 17449-17452. DOI: 10.1039/c1cp22353d
  79. Chuvilin, E.M., Istomin, V.A., Safonov, S.S. 2011. Residual nonclathrated water in sediments in equilibrium with gas hydrate. Comparison with unfrozen water (2011) Cold Regions Science and Technology, 68 (1-2), pp. 68-73. DOI: 10.1016/j.coldregions.2011.05.006.
  80. Balakin, B.V., Hoffmann, A.C., Kosinski, P., Istomin, V.A., Chuvilin, E.M. 2010. Combined CFD/population balance model for gas hydrate particle size prediction in turbulent pipeline flow. AIP Conference Proceedings, 1281, pp. 151-154. DOI: 10.1063/1.3498074
  81. Chuvilin, E.M., Guryeva, O.M. 2009. Experimental investigation of CO2 gas hydrate formation in porous media of frozen and freezing sediments. Earth’s Cryosphere, 13 (3), pp. 70-79
  82. Istomin, V.A., Chuvilin, E.M., Makhonina, N.A., Bukhanov, B.A. 2009. Temperature dependence of unfrozen water content in sediments on the water potential measurements. Earth’s Cryosphere, 13 (2), pp. 35-43
  83. Chuvilin, E.M., Petrakova, S.Yu., Gureva, O.M., Istomin, V.A. 2007. Formation of carbon dioxide gas hydrates in freezing sediments and decomposition kinetics of the hydrates formed. Physics and Chemistry of Ice, pp. 147-154
  84. Uchida, T., Takeya, S., Chuvilin, E.M., Ohmura, R., Nagao, J., Yakushev, V.S., Istomin, V.A., Minagawa, H., Ebinuma, T., Narita, H. 2004. Decomposition of methane hydrates in sand, sandstone, clays and glass beads. Journal of Geophysical Research: Solid Earth, 109 (5). DOI: 10.1029/2003JB002771
  85. Ananjeva, G.V., Drozdov, D.S., Instances, A., Chuvilin, E.M. 2003. Oil contamination of the seasonally thawed layer and of the upper horizons of permafrost on the experimental site “Bolvanskiy cape”, Pechora river mouth. Earth’s Cryosphere, 7 (1), pp. 49-59
  86. Chuvilin, E.M., Miklyaeva, E.S. 2003. An experimental investigation of the influence of salinity and cryogenic structure on the dispersion of oil and oil products in frozen soils. Cold Regions Science and Technology, 37 (2), pp. 89-95. DOI: 10.1016/S0165-232X(03)00063-6
  87. 77. Chuvilin, E.M., Ebinuma, T., Kamata, Y., Uchida, T., Takeya, S., Nagao, J., Narita, H. 2002. Effects of temperature cycling on the phase transition of water in gas-saturated sediments Canadian Journal of Physics, 81, pp. 343-350. DOI: 10.1139/P03-028
  88. Chuvilin, E.M., Perlova, E.V., Makhonina, N.A., Yakushev, V.S. 2002. Phase transitions of water in gas-saturated grounds. Geologiya i Geofizika, 43 (7), pp. 689-697
  89. Chuvilin, E.M., Naletova, N.S., Miklyaeva, E.C., Kozlova, E.V., Instanes, A. 2001. Factors affecting spreadability and transportation of oil in regions of frozen ground. Polar Record, 37 (202), pp. 229-238
  90. Yakushev, V.S., Chuvilin, E.M. 2000. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Regions Science and Technology, 31 (3), pp. 189-197. DOI: 10.1016/S0165-232X(00)00012-4
  91. Chuvilin, E.M., Yakushev, V.S., Perlova, E.V. 2000. Gas and possible gas hydrates in the permafrost of bovanenkovo gas field, Yamal Peninsula, West Siberia. Polarforschung, 68 (1-3), pp. 215-219
  92. Chuvilin, E.M., Yershov, E.D., Naletova, N.S., Miklyaeva, E.S. 2000. The use of permafrost for the storage of oil and oil products and the burial of toxic industrial wastes in the Arctic. Polar Record, 36 (198), pp. 211-214
  93. Ershov, E.D., Chuvilin, E.M., Smirnova, O.G. 1999.The mobility of ions of chemical elements in ice and frozen soils. Doklady Akademii Nauk, 367 (6), pp. 796-798
  94. Chuvilin, E.M., Yakushev, V.S., Perlova, E.V., Kondakov, V.V. 1999. Gas component of permafrost rock masses at bovanankova gas condensate field (Yamal Penensula). Doklady Akademii Nauk, 369 (4), pp. 522-524
  95. Chuvilin, E.M., Yakushev, V.S., Perlova, E.V., Kondakov, V.V. 1999. The gaseous component of frozen rocks within the Bovanenkovo gas-condensate field in the Yamal Peninsula. Doklady Earth Sciences, 369 A, pp. 1321-1323
  96. Ershov, E.D., Chuvilin, E.M., Smirnova, O.G. 1999. Mobility of chemical element ions in ice and frozen rocks. Doklady Earth Sciences, 367 A, pp. 849-851
  97. Chuvilin, E.M. 1999. Migration of ions of chemical elements in freezing and frozen soils. Polar Record, 35 (192), pp. 59-66
  98. Maksimov, A.M., Yakushev, V.S., Chuvilin, E.M. An opportunity evaluation of gas throw out during gas hydrates decomposition in reservoirs (1997) Doklady Akademii Nauk, 352 (4), pp. 524-526
  99. Xu, X., Wang, J., Zhang, L., Deng, Y., Chuvilin, E.M., Yershov, E.D., Ishizaki, T., Fukuda, M. 1997. Mechanism of frost heave by film water migration under temperature gradient. Chinese Science Bulletin, 42 (15), pp. 1290-1294
  100. Yershov, E.D., Lebedenko, Yu.P., Chuvilin, Ye.M., Istomin, V.A., Yakushev, B.S. 1994. Gas hydrates of the cryolithozone. Doklady. Earth science sections, 322 (1), pp. 66-69
  101. Van Oss, C.J., Giese, R.F., Wentzek, R., Norris, J., Chuvilin, E.M. 1992. Surface Tension Parameters of Ice Obtained From Contact Angle Data and From Positive and Negative Particle Adhesion to Advancing Freezing Fronts. Journal of Adhesion Science and Technology, 6 (4), pp. 503-516. DOI: 10.1163/156856192X00827

PATENTS

  1. Bukhanov B.A., Mukhametdinova A.Z., Afonin M.M., Chuvilin E.M., Istomin V.A. Method for determining the amount of equilibrium water in hydrate-containing rocks. Authors: Number: #RU 2791953 C1. 14.03.2023
  2. Istomin V.A., Chuvilin E.M., Bukhanov B.A., Tohidi B., Yang J, Hassanpouryouzband, A., Okwananke A. Method for extracting natural gas from a gas hydrate deposit. #RU 2 693 983 C2, 8.07.2019
  3. Istomin V.A., Chuvilin E.M., Bukhanov B.A. Method for determining the content of unfrozen water in frozen soils. #RU 2654832, 22.05.2018
  4. Khrustalev L.N., Chuvilin E.M., Gunar A.Yu. Device for elimination of heat flow from production well into permafrost.#RU 156025, 27.10.2015
  5. Mikhailov Dmitry, Chuvilin Evgeny, Melchakova Lubov, Buida Tatyana Method for determining weight concentration of a polymer penetrated into a porous medium. #US20150140674A1, 21.05.2015
  6. Nadeev Alexander, Dmitry Korobkov, Evgeny Chuvilin, Sergey Safonov, Oleg Dinariev. Method for determinimg the properties of porous materials. #US20150107339A1, 23.04.2015
  7. Mikhailov D. N., Chuvilin E.M., Melchakova L.V., Buyda T.A. Method for deterimining the weight concentration of a polymer penetrating into a porous medium. #RU 2543700, 10.03.2015
  8. Nadeev Alexander, Evgeny Chuvilin, Olga Popova. Method for examining samples of unconsolidated porous media. # US20140334690A1, 13.11.2014
  9. Nadeev Alexander, Evgeny Chuvilin, Olga Popova. Method for examining samples of frozen rocks. #US20140328449A1, 6.11.2014
  10. Mikhailov Dmitry, Valery Shako, Evgeny Chuvilin, Evgeny Samarin. Method for measurement of weight concentration of clay in a sample of a porous material. #US 20140065713A1, 6.03.2014
  11. Mikhailov Dmitry, Shako Valery, Chuvilin Evgeny, Krupskaya Viktoria. Method for measurement of weight concentration of clay in a sample of a porous material. #US 20140064452 A1, 6.03.2014
  12. Mikhailov Dmitry, Shako Valery, Chuvilin Evgeny, Buyda Tatiyana. Method for measuring weight concentration of clay in a sample of a porous medium. #US 20140060172 A1, 6.03.2014
  13. Mikhilov D.N., Shako V.V., Chuvilin E.M., Samarin E.N. Method for measuring the weight concentration of clay a sample. #RU 2507510, 20.02.2014
  14. Mikhilov D.N., Shako V.V., Chuvilin E.M., Krupskaya V.V. Method for measuring weight concentration of clay material in sample of porous medium. #RU 2507501, 20.02.2014
  15. Mikhilov D.N., Shako V.V., Chuvilin E.M., Buyda T.A. Method for measuring the weight concentration of clay material in a sample of a porous medium patent. #RU 2507500, 20.02.2014
  16. Nadeev A.N., Korobkov D.A., Chuvilin E.M., Safonov S.S., Dinariev O.Yu. Method for determining properties of porous materials. #RU 2491537, 19.08.2013
  17. Nadeev A.N., Chuvilin E.M., Popova O.V. Metod for investigation of samples of non–consolidated porous media. #RU 2486495, 27.06.2013
  18. Nadeev A.N., Chuvilin E.M., Popova O.V. Method for studying frozen rock samples. #RU 2482465, 6.06.2013
  19. Yusupov V.P., Salomatin A.S., Chuvilin E.M. System for hydrate detection. #RU 115928, 10.05.2012
  20. Chuvilin Evgeny M., Istomin Vladimir A., Safonov Sergey S. Method for determination of pore water content in equilibrium with gas hydrate in dispersed media. #US 2010/0139378 A1
  21. Chuvilin E.M., Istomin V.A., Safonov S.S. Method for determining the content of pore water in equilibrium with gas hydrate in dispersed media (options). #RU 2391650, 10.06.2010

 

Education

June 1984: Ph.D. Geology, Moscow State University, Moscow, Russia. Ph.D. Thesis on Geocryology.
September 1980: M.S. Geology, Moscow State University, Moscow, Russia

Suggested topics for master’s theses

  • Experimental modeling of destabilization of gas hydrates in the permafrost zone.
  • Experimental studies of the properties of ice and hydrate bearing rocks under changing thermobaric conditions
  • Assessment of the conditions for the existence of gas hydrates in supra-Cenomanian gas reservoirs
  • Experimental modeling of CO2 hydrate formation in permafrost during injection of CO2-containing gas mixtures

PhD theses defended under the supervision of E. Chuvilin

2024 -Zmaev Maksim (Skoltech) – Experimental evaluation of filtration properties of cryolithozone rocks under conditions of formation and decomposition of gas hydrates.

2022 -Ekimova Valentina  (Skoltech) – Experimental modeling of gas hydrates interaction with a salt solution in permafrost

2021 -Grebenkin Sergey (Melnikov Permafrost Institute) – Regularities of changes in sediment permeability during ice and hydrate formation.

2021 -Davletshina Dinara (Melnikov Permafrost Institute) – Regularities of the formation and decomposition of gas hydrates in frozen sediments

2013 -Bukhanov Boris (MSU) – Patterns of changes in the thermal conductivity of gas and hydrate–bearing sediments under various pressure and temperature conditions.

2011 -Guryeva Olga (MSU) – Hydrate formation processes during CO2 sequestration in permafrost.

2004 -Kozlova (Tkacheva) Ekaterina (MSU) – Regularities of hydrate and ice formation in gas–saturated sediments.

2002 -Miklyaeva Evgeniya (MSU) – Regularities of oil transfer in frozen and freezing grounds in case of their technogenic pollution.

2001 -Perlova Elena (MSU) – Features of the gas content of permafrost on the example of the northwestern part of the Yamal Peninsula.

1997 -Smirnova Olga (MSU) – Migration of ions of chemical elements in frozen sediments and ice (co-supervisor Ershov E.D).

1996 -Naletova (Sokolova) Natalia (MSU) – Mass transfer and cryogenic structure and texture formation in freezing saline sediments (co-supervisor Ershov E.D).

 

Master’s theses defended under the supervision of E. Chuvilin since 2018

2023 –  Pankratova Elena ( Skoltech). Effect of Pressure Decreasing and Temperature Rising on Thermal Conductivity Changes of Frozen Hydrate Bearing Sandy Reservoirs.

2023 –   Krivokhat Ekaterina (Skoltech). Experimental Modeling of the Interaction of Frozen Hydrate-Saturated Rocks With Saline Solutions.

2022 –   Zolotarev Aleksandr (Skoltech). Computationally efficient forward seismic modeling in heterogeneous multi-scale media using meshless scheme with radial basis functions (co-supervisor Pissarenko)

2020 – Merkulova Maria (Skoltech). Determination of temperature conditions of pore water transition to hydrate and ice in the Turonian reservoirs

2020 –   Ogienko Mariia  (Skoltech).  Evaluation of the thermal interaction of gas production wells with gas hydrate bearing permafrost

2020- Mahankali Varun (Skoltech).  Assessing the nature and degree of various factors influencing the geomechanical properties of hydrate-bearing sediments

2020-    Mingareeva Gusel (MSU). Determination of the freezing temperature of soils and the content of unfrozen water in them in the spectrum of negative temperatures by measuring the activity of pore moisture

2020- Maksim Zhmaev (MSU). Changes in gas permeability of frozen sandy rocks during the formation and decomposition of gas hydrates

2019 – Shevchik Franz (MSU).  Assessment of unfrozen water content in frozen rocks of various compositions based on experimental determinations of pore moisture activity

2018 – Ekimova Valentina (Skoltech). Experimental modeling of methane recovery from gas hydrate saturated sediments by flue gas / nitrogen injection

Research Interests

The area of scientific interests of Chuvilin E.M. is physical chemistry and petrography of frozen and hydrate saturated rocks, gases and gas hydrates in the permafrost zone, experimental modeling of hydrate and ice formation processes in rocks, investigation of the properties of frozen and hydrate saturated rocks, migration of organic and mineral pollutants in the permafrost zone.

Past Project 

  • Project for Gazprom VNIIGAZ  “Necessary complex of laboratory studies of hydrate-containing core” (2024) – Leader
  • Grant from the Governor of the Yamal-Nenets Autonomous Okrug “Development of the concept of a digital model of frozen core for permafrost soils of the Yamal-Nenets Autonomous Okrug” (2023) -Leader 
  • Project for TotalEnergies “Multidisciplinary study of hydrates of greenhouse gases as geomechanical and climate risk factors” (2021) – Leader
  • RFFI (Russian Foundation for Basic Research) – KRF (Korea Research Foundation) grant for gas hydrate study (2020-2021) -Leader 
  • RNF (Russian Science Foundation) grant for experimental modeling and thermodynamic description of existence conditions of gas and gas hydrate accumulations in cryolithozone (2018-2021) -Team member
  • Project for Total “Simulation of gas–saturated taliks evolution within the permafrost of the oil and gas fields in the North of Western» (2017-2018) – Leader
  • RFFI (Russian Foundation for Basic Research) grant for study effect of ice and hydrate formation in the gas permeability of rocks (2017-2019) -Leader
  • RNF (Russian Science Foundation) grant for study of gas hydrates as a source of geological risk in the exploration of oil and gas fields in the Arctic (2016-2018) – Leader
  • Project for Total about study permafrost impact on PVT parameters during recent glaciations (2015-2016) – Leader
  • RFFI (Russian Foundation for Basic Research) grant for study of role of salt transfer processes as a factor affecting on degradation of underwater permafrost and gas hydrates (2013-2015) -Leader
  • Project for GAZPROM about study gas permeability of rock during gas hydrate formation (2013-2014) – Leader
  • RFFI (Russian Foundation for Basic Research) grant for study of thermal conductivity of gas hydrate saturated sediments (2012-2014) – Leader
  • RFFI (Russian Foundation for Basic Research) grant for study of submarine permafrost and gas hydrate in arctic shelf (2011-2012) -Team member
  • Project for Gazprom about study relict gas hydrate accumulation in Bovanenkovo gas field area, North West Siberia (2010-2011) – Leader
  • RFFI (Russian Foundation for Basic Research) – JSPS (Japan Society for the Promotion of Science) grant for gas hydrate study, (2009-2010) – Leader
  • Grant RFFI. Investigation of saline filtration in frozen soils, (2009–2010) -Team member
  • Project for study phase composition and properties of hydrate–bearing rocks (Moscow Research Center Schlumberger 2008-2009) – Leader
  • CRDF (The U.S. Civilian Research & Development Foundation) grants for gas hydrate study, (2005-2007) – Leader
  • RFFI (Russian Foundation for Basic Research) – JSPS (Japan Society for the Promotion of Science) grant for gas hydrate study, (2006-2007) – Leader
  • RFFI– GFEN (National Natural Science Foundation, China) grant for gas hydrate study, (2005-2007) – Leader
  • INTAS grant for gas hydrate study, (2004-2006) – Leader
  • RFFI grants for investigation of gas hydrate in sediments, (2001-2003 and 2004-2006) – Leader
  • International project – oil contaminations in permafrost (Norwegian Geotechnical Institute, 1999-2000) – Leader
  • Grants “Universities of Russia” for study of gas hydrate formation in permafrost, (1996-1998) – Leader
  • International project – gas hydrate in Mackenzie delta, (1995-1996) – Leader
  • Soros international grant for gas hydrate study, (1994-1995) -Team member
  • Project for disposal of salt solution into Permafrost (Yakutia, YAKUTNIIPIALMAZ, 1988-1990) – Team member

2023 – Skoltech Staff Excellence Award (Skoltech Open Vote) in the “Strategic Research Excellence Award” category for permafrost and gas hydrate research in the Arctic

2008 – awarded a diploma from the Ministry of Natural Resources of Russia

2005 -awarded a diploma from the Ministry of Education of Russia

1997- awarded the medal “850th Anniversary of Moscow”

1995, 1997, 1999, 2000, 2001 -five times was awarded the title Soros Associate Professor

1994- the title of Associate Professor

1993- the title of Senior Researcher

1992- Honored Associate Professor of the Glaciology and Geocryology Institute of the Academy of Sciences of China

 

Popular science publications

2023 – Chuvilin E., Sokolova N. Temperature anomalies of bottom sediments in the Arctic seas (in Russian). https://goarctic.ru/nauka-i-kultura/temperaturnye-anomalii-donnykh-otlozheniy-arkticheskikh-morey/

2022 – Chuvilin E., Sokolova N. What do the hillocks on the surface of the tundra hide in themselves? (in Russian). https://goarctic.ru/priroda/chto-tayat-v-sebe-bugry-na-poverkhnosti-tundry/

2021 – Chuvilin E., Sokolova N. Gas hydrates in “non-permafrost” (in Russian) https://goarctic.ru/news/gazovye-gidraty-v-nevechnoy-merzlote/

2020 – Chuvilin E., Sokolova N. Frozen – frosty, thawed – unfrozen: such different arctic soils (in Russian) https://goarctic.ru/regions/myerzlye-moroznye-talye-nemyerzlye-takie-raznye-arkticheskie-grunty/

2020 – Chuvilin E., Sokolova N. Paradoxes of the Arctic: non-freezing water in permafrost (in Russian) https://goarctic.ru/work/paradoksy-arktiki-nezamerzayushchaya-voda-v-merzlote/?sphrase_id=4967

2020 – Chuvilin E., Sokolova N. Methane breath underwater permafrost (in Russian) https://goarctic.ru/work/metanovyy-vydokh-podvodnoy-merzloty/

2019 – Chuvilin E., Sokolova N. Craters are changing the landscape of the Arctic (in Russian) https://goarctic.ru/work/kratery-menyayut-landshaft-arktiki/

2019 – Chuvilin E., Sokolova N. Methane in permafrost – resource or danger? (in Russian) https://goarctic.ru/work/metan-v-merzlote-resurs-ili-opasnost/

Press response  

English

2017- Response to the article in Energy & Fuels about Effect of Hydrate Formation Conditions on Thermal Conductivity of Gas-Saturated Sediments. https://advanceseng.com/effect-of-hydrate-formation-conditions-on-thermal-conductivity-of-gas-saturated-sediments/

2019 – Response to the article in Geosciences about new reason for the release of methane into the atmosphere on the Arctic shelf. https://www.eurekalert.org/news-releases/492576

2020 – Response to the article in Geosciences about Gas-emission craters of northern West Siberia: characteristics, models of gas accumulation and explosive gas emissions. https://www.eurekalert.org/pub_releases/2020-06/sios-hbm060320.php

2020 – Press response to field research of a new gas emission crater in Yamal (August, 2020). https://www.thescottishsun.co.uk/uncategorized/5998409/giant-holes-forms-siberia-melting-permafrost/amp/; https://edition.cnn.com/2020/09/04/world/craters-tundra-siberia-trnd-scn/index.html; https://www.nationalgeographic.com/science/2020/09/colossal-crater-found-Siberia-what-made-it/

2021 – Response to the article in Energy & Fuels about Gas Permeability of Sandy Sediments: Effects of Phase Changes in Pore Ice and Gas Hydrates. https://phys.org/news/2021-06-permafrost-methane-arctic.html; https://earth-chronicles.com/science/researchers-show-how-permafrost-releases-methane-in-the-warming-arctic.html

2021 – Response to the article in Geosciences about Formation of Gas-Emission Craters in Northern West Siberia: Shallow Controls. https://shirlleycoyle.wordpress.com/2021/09/28/the-ground-is-literally-exploding-due-to-climate-change-in-siberia-and-its-going-to-get-worse/

2021 – Response to the article in Marine and Petroleum Geology about Thermal properties of sediments in the East Siberian Arctic Seas. https://www.hse.ru/en/news/research/547235402.html; https://www.vice.com/en/article/7kbmzb/the-arctic-seafloor-is-degrading-and-could-be-a-climate-time-bomb

2022 – Response to the article in Cold Regions Science and Technology about Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. https://www.skoltech.ru/en/2022/03/new-technique-for-monitoring-soil-freezing-will-make-building-on-permafrost-safer/

2022 – Response to the article in Geosciences about Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. https://phys.org/news/2022-04-gas-saturated-permafrost-oil-gas-wells.html?msclkid=ef3f68ffc40d11ec89ad2ff45b53b5de; https://www.miragenews.com/research-predicts-thawing-of-gas-saturated-766577/?msclkid=b89df8eec40e11ec8b8eabec018789a2

2022 – Response to the articles in Geosciences and Energy&Fuels about various aspects of the penetration of sea salt and other salts into frozen soil containing gas hydrates. https://phys.org/news/2022-08-reveal-salt-climate.html

2022 – Storys in CNN’s science newsletter. https://edition.cnn.com/2020/09/04/world/craters-tundra-siberia-trnd-scn/index.html; https://edition.cnn.com/2022/11/12/world/permafrost-climate-change-explainer-scn/index.html/

2022 – Turkish TV interview about craters in Siberia. https://www.aa.com.tr/en/environment/methane-blowout-craters-in-siberia-are-canary-in-a-coal-mine-for-global-climate-/2686703

2022 – Responses to Interview for Newsweek. https://outsider.com/outdoors/news-outdoors/watch-100-foot-wide-gate-to-hell-crater-opens-russian-town/

 

Russian

2018 – Response to the article in Cold Regions Science and Technology about The effect of gas hydrates on the strength of permafrost. https://nauka.tass.ru/nauka/6816952

2018- The article about Gas emissions from frozen rocks in Yamal. https://www.promved.ru/articles/article.phtml?id=3209&nomer=117

2019- Response to the article in Geosciences about new reason for the release of methane into the atmosphere on the Arctic shelf. https://tass.ru/nauka/6452770; https://naked-science.ru/article/sci/otkryta-novaya-prichina-vybrosa; https://ria.ru/20190521/1553665276.html

2019- Response to the articles in Scientific reports about Gas from fuel combustion has been adapted to extract methane from permafrost. https://nauka.tass.ru/nauka/7446905https://naked-science.ru/article/column/uchenye-nashli-novyj-sposob-izvlecheniya-metana-iz-vechnoj-merzloty?amp

2020 – Response to the articles in Geosciences about Gas-emission craters of northern West Siberia: characteristics, models of gas accumulation and explosive gas emissions. https://ria.ru/20200603/1572405293.html; https://nauka.tass.ru/nauka/8636891; https://vz.ru/news/2020/6/3/1042947.html

2020 – Press response to the participation of employees of the Skoltech Hydrocarbon Production Center in the 2019-2020 Arctic marine expedition. https://old.sk.ru/news/b/articles/archive/2020/01/29/ne-upustit-liderstva-v-odnom-iz-vazhneyshih-napravleniy-nauk-o-zemle.aspx; https://www.skoltech.ru/2020/12/uchenye-skolteha-v-sostave-mezhdunarodnoj-arkticheskoj-ekspeditsii-novye-otkrytiya-i-gorizonty-dlya-nauchnyh-issledovanij/

2021 – Response to the article in Energy & Fuels about Gas Permeability of Sandy Sediments: Effects of Phase Changes in Pore Ice and Gas Hydrates.  http://www.ngv.ru/news/issledovateli_pokazali_kak_vechnaya_merzlota_vydelyaet_metan_v_tepleyushchey_arktike/; https://scientificrussia.ru/articles/issledovateli-pokazali-kak-vechnaya-merzlota-vydelyaet-metan-v-tepleyushchej-arktike;

2021 – Response to the article in Marine and Petroleum Geology about Thermal properties of sediments in the East Siberian Arctic Seas. https://scientificrussia.ru/articles/sol-led-tocit-ucenye-nazvali-priciny-uazvimosti-podvodnoj-merzloty; https://lenta.ru/news/2021/12/29/ice/

2022 – Response to the article in Cold Regions Science and Technology about Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. https://nauka.tass.ru/nauka/14063541?utm_source=yxnews&utm_medium=desktop; https://naked-science.ru/article/column/novaya-tehnologiya-otsenki-zamerzaniya-vody-v-gruntah

2022 – Response to the article in Geosciences about Simulating Thermal Interaction of Gas Production Wells with Relict Gas Hydrate-Bearing Permafrost. https://naked-science.ru/article/column/sprognozirovano-tayanie-gazonasyshhennoj-merzloty?msclkid=d4d6d379c40c11eca7aa4eec05c23c20; https://nangs.org/news/upstream/uchjonye-sprognozirovali-tayanie-gazonasyshchennoj-merzloty-vokrug-dobyvayushchikh-skvazhin-rossijskoj-arktiki?msclkid=c13af81fc40c11ecb0c61f4e5169084d

2022 – Response to the articles in Geosciences and Energy&Fuels about various aspects of the penetration of sea salt and other salts into frozen soil containing gas hydrates. https://nauka.tass.ru/nauka/15597333; https://mir24.tv/news/16521618/uchenye-nashli-mehanizmy-vliyayushchie-na-proniknovenie-soli-v-podvodnuyu-vechnuyu-merzlotu; https://naked-science.ru/article/column/uchenye-vyyasnili-v-chem-sol-globalnogo

2022 – About Interview with the PRIME Economic Information Agency (Russia Today media group). https://1prime.ru/energy/20220425/836744219.html; https://gazo.ru/ru/news/sector/ekspert-predupredil-ob-ugrozakh-dlya-dobychi-gaza-v-arktike/; https://www.angi.ru/news/2898314-Таяние

2022 – Participation in the Russian Geographical Society Festival from Skoltech. https://elementy.ru/events/444062/Skoltekh_na_Festivale_RGO_Evgeniy_Chuvilin_Rossiyskaya_Arktika_i_zagadki_vechnoy_merzloty?period=m

2022 -The film about Skoltech scientists at the Festival of Contemporary Scientific Films. https://www.skoltech.ru/2022/09/filmy-pro-uchyonyh-skolteha-pokazhut-v-kinoteatrah-moskvy/

2023 – Response to the article in Marine and Petroleum Geology about temperatures of bottom sediments and underwater permafrost on the Russian Arctic shelf. https://naked-science.ru/article/column/v-skoltehe-predstavili-no; https://www.atomic-energy.ru/news/2023/09/21/138920; https://neftegas.info/news/article/21279

2023 –About «Vesti-Yamal» report on a visit to the carbon test site in Labytnangi. https://vesti-yamal.ru/ru/vjesti_jamal/rossiiskie_uchenye_prileteli_na_yamal_dlya_izucheniya_tayaniya_vechnoi_merzloty/; https://goarctic.ru/news/uchenye-iz-skolkovo-prileteli-na-karbonovyy-poligon-v-labytnangi-yanao-dlya-izucheniya-tayaniya-vech/

2023 –About Batagaika thermokarst sinkhole. https://dzen.ru/a/ZDUEdJfq7GBJG8Vi

2023 – From TASS interview about the solar eclipse in Yamal (September, 19380. https://tass.ru/spec/solnechnoe-zatmenie?

2024 – Review of cratering models in the north of Western Siberia. https://dzen.ru/a/ZbM9TmoqZwOACafs

2024 – Response to the article in Cold Regions Science and Technology about Gas flow in frozen hydrate-bearing sediments exposed to compression and high-pressure gradients: Experimental modeling. https://iz.ru/1774404/denis-gricenko/detonacionnyi-bum-vzryvy-v-arktike-smodeliruut-s-pomosu-ustanovki