Laboratory of Computational
Engineering
Mathematics Genealogy Tree
of Prof. Oleg V. Vasliyev
Prof. Vasilyev received his MSc degree in Applied Mathematics and Physics from Moscow Institute of Physics and Technology in 1991, the MSc and PhD degrees in Mechanical Engineering from the University of Notre Dame, in 1994 and 1996, respectively, and Doctor of Sciences degree in Computational Mathematics in 2021 from Keldysh Institute of Applied Mathematics of Russian Academy of Sciences. Prior to rejoining Skoltech in 2023, Prof. Vasilyev has worked as a leading research scientist at the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, a consultant for Huawei Russian Research Institute in the position of Chief Project Engineer for the Extended Reality research group, a Professor at the Center for Design, Manufacturing and Materials of the Skolkovo Institute of Science and Technology (2017-2018), a Professor in the Department of Mechanical Engineering at the University of Colorado (2002-2016), an Assistant Professor in the Department of Mechanical and Aerospace Engineering at the University of Missouri – Columbia (1998-2002) and a Research Fellow at the Center for Turbulence Research, Stanford University (1996-1998). In 2016 Prof. Vasilyev has founded a consulting company Adaptive Wavelet Technologies, LLC, through which he has provided consulting services to Space Exploration Technologies Corporation (SpaceX) prior to joining the Skolkovo Institute of Science and Technology in 2017.
Prof. Vasilyev conducts research in the general area of theoretical and computational fluid mechanics with the emphasis on the creation of novel adaptive approaches for modeling and simulation of complex multi-scale phenomena, development of low order “physics-capturing” models and robust computational methodologies with tight integration of the numerics and physics-based modeling, and applications of these novel approaches to challenging multi-scale/multi-physics fluid problems of engineering and scientific interest. Prof. Vasilyev research has been supported by grants from Russian Science Foundation, National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Department of Energy (DOE), Office of Naval Research (ONR), Caterpillar Inc., and United Sates Industry Coalition (USIC), with awards exceeding $12M ($4M as PI). Prof. Vasilyev is the author and co-author of more than 100 peer-reviewed journal and conference publications. He has given more than 200 lectures at conferences at universities around the world. In recognition of his accomplishments Prof. Vasilyev has been elected the recipient of Fredric William Basel Research Award from Alexander Von Humboldt Foundation, Germany, which is granted to scientists and scholars, internationally renowned in their field. In 2012 Prof. Vasilyev received the honor of being elected a Fellow of the American Physical Society “for pioneering work on adaptive wavelet methods for Computational Fluid Dynamics, fundamental contributions to the advancement of Adaptive Large Eddy Simulation approach and explicit filtering in LES, and the development of volume penalization methods for compressible flows.” In 2015 Prof. Vasilyev received a privilege of being elected a Fellow of the American Society of Mechanical Engineers “for the continuous and systematic effort in the development of a unified modeling and computational multi-scale framework that can be used for efficient modeling and simulation of complex multi-scale phenomena.”
Today there are a number of problems in engineering and science, which share a single common computational challenge: the ability to solve and/or model accurately and efficiently a wide range of spatial and temporal scales. Numerical simulation of such problems requires either the use of highly adaptive physics based numerical algorithms, the use of reduced models that capture “important” physics of the problem at a lower cost, or the combination of both approaches. In addition, with the rapidly increasing ability to model large problems and the constant demand to extract and visualize the information relatively quickly or even interactively, the scientific visualization of very large data sets has become a challenge in itself. Currently we are working on development of multi-scale modeling and simulation environment capable of performing different fidelity simulations for single/multi-phase, inert/reactive, compressible/incompressible, transitional and turbulent flows in complex geometries. At the core of the problem solving environment is an integrated adaptive multi-scale/multi-form modeling and simulation framework that on-the-fly identifies regions of the flow with a suitable model-form, differentiates the most dominant (energetic) structures that control the overall dynamics of the flow; and resolves and “tracks” on a space-time adaptive mesh these dynamically-dominant flow structures, while modeling the effect of the unresolved motions using the compatible multi-level model form. The unique feature of the problem-solving environment is a unified, dynamically adaptive, wavelet multi-resolution (multi-scale), and multi-form approach to numerical algorithms and solvers, modeling and visualization.
Since the inception of Computational Fluid Dynamics, turbulence modeling and numerical methods evolved as two separate fields of research with the perception that once a turbulence model is developed, any suitable computational approach can be used for the numerical simulations of the model. Latest advancements in wavelet-based adaptive multi-resolution methodologies for the solution of partial dierential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to develop a cardinally different framework for hierarchical modeling and simulation of turbulent flows that fully utilizes spatial/temporal turbulent flow intermittency and tightly integrates numerics and physics-based modeling. The integration is achieved by combining spatially and temporally varying wavelet thresholding with hierarchical wavelet-based turbulence modeling. The resulting approach provides automatic smooth transition from directly resolving all flow physics to capturing only the energetic/coherent structures, leading to a dynamically adaptive variable fidelity approach. Our current efforts are focused on the development of the unified framework that will allow for synergistic transition among models of different hierarchy, namely, the adaptive Wavelet-based DNS, the Adaptive wall-resolved LES, Adaptive wall-modeled LES, and adaptive wavelet-based Unsteady RANS and application of the approach to modeling and simulation of industrially relevant flows.
Four general classes of methods for solving nonlinear partial differential equations on adaptive computational meshes have been developed by our group. Each method uses the adaptive wavelet collocation method (AWCM) based on bi-orthogonal lifted interpolating wavelets to construct a computational grid adapted to the solution. The wavelet decomposition naturally provides a set of nested multi-scale grids adapted to the solution, and we take advantage of this property in developing our methods. In the first two methods we implement a traditional time marching scheme for parabolic and hyperbolic partial differential equations, but use AWCM to adapt the computational grid to the solution at each time step. When hyperbolic equations are solved an additional wavelet-based procedure for shock capturing is used. With this procedure the mesh is refined in the vicinity of the shock up to a-priori specified resolution and the shock is smoothed out using localized numerical viscosity. The third method simply uses the multi-scale wavelet decomposition as the basis for an adaptive multilevel method for nonlinear elliptic equations. Recently, we have begun to investigate a combination of the first three approaches to produce an adaptive simultaneous space–time method. In this case, both the space-time grid adapts locally to the solution, and the final solution is obtained simultaneously in the entire space–time domain of interest. Our current efforts are focused on further development of the parallel wavelet-based methods with mesh and anisotropy adaptation.
AWCM-1D is an open sourced MATLAB and Python libraries for learning and demonstration of Adaptive Wavelet Collocation Method. It offers a collection of subroutines/algorithms essential for developing/undrstanding of the Adaptive Wavelet Collocation Method (AWCM). The technical details of the AWCM are described in the paper by Vasilyev and Bowman (J. Comp. Phys., 2000). All demo subroutines are written for clarity of understanding of the algorithm without any consideration for efficiency. The software is accessible on GitLab under MIT Open Source Licence and can be accessed via the follwoing link: https://gitlab.com/awcm-1d.
ACADEMIC HONORS
Skolkovo Institute of Science and Technology (Skoltech) is pleased to announce a call for applications for PhD student and Research Scientist/Software Engineer/Postdoctoral positions in the research group of Professor Oleg V. Vasilyev in the areas specified below:
Профессор Васильев закончил Московский Физико-Технический Институт в 1991 г., получив степень магистра в области прикладной математики и физики. В 1994 и 1996 гг. профессор Васильев получил соответственно степени Магистра и Доктора Философии на факультете Аэрокосмической Техники и Механики Университета Нотр Дам, США. В 2021 году профессору Васильеву была присуждена ученая степень доктора физико-математических наук по специальности «вычислительная математика». До возвращения в Сколтех, профессор Васильев, работал ведущим научным сотрудником института прикладной математики им. Келдыша Российской академии наук, консультантом Российского исследовательского института Huawei в должности главного инженера проектов в исследовательской группе расширенной реальности, профессором Центра по проектированию, производственным технологиям и материалам Сколковского института науки и технологий (2017-2018 гг.), профессором факультета механики Университета Колорадо (2002-2016 гг.), доцентом факультета механики и аэрокосмической техники Университета Миссури – Колумбия (1998–2002 гг.) и научным сотрудником Центра исследований турбулентности Стэнфордского университета (1996–1998 гг.). В 2016 году профессор Васильев основал консалтинговую компанию ООО «Adaptive Wavelet Technologies», через которую он оказывал консультационные услуги Корпорации космических исследований (SpaceX) до прихода в Сколковский институт науки и технологий в 2017 году.
Профессор Васильев проводит исследования в областях вычислительной математики, теоретической и вычислительной механики жидкости и газа с акцентом на создание новых физико-разрешающих подходов численного моделирования, разрабатывает математические модели и адаптивные вычислительные методы, и применяет новые подходы к численному моделированию многомасштабных проблем жидкости и газа как научного так и прикладного характера. Его научные исследование были финансированы Российским научным фондом (РНФ), национальным научным фондом США (NSF), национальным управлением США по аэронавтике и исследованию космического пространства (NASA), департаментом энергетики США (DOE), национальной лабораторией Аргонн, США (ANL), национальной лабораторией Лос-Аламос, США (LANL), управление военно-морских исследований США (ONR), компанией Катерпиллер, США, и промышленной коалицией США (USIC) с общим объёмом финансирования превышающим $12 млн и $4 млн в качестве руководителя проекта. Профессор Васильев является автором и соавтором более 100 рецензируемых статей в журналах и материалах конференций. Профессор Васильев прочитал более 200 лекций на конференциях, в университетах и научных центрах по всему миру. В 2008 г., в знак признания его достижений, профессор Васильев был награждён Премией Фридриха Вильгельма Бесселя от фонда Александра фон Гумбольдта, Германия, которой награждаются ученые, всемирно известные в своей области. В 2012 г. профессор Васильев был избран Почётным Членом Американского Физического Общества за “новаторскую разработку адаптивных методов численного моделирования на основе вейвлетов, за фундаментальный вклад в развитие адаптивного метода крупных вихрей и подхода явной фильтрации в методе крупных вихрей, а также за развитие методов затопленных границ для сжимаемых течений.” В 2015 г. профессор Васильев был удостоен Почётного Членства Американского Общества Инженеров-Механиков за “непрерывные и систематические усилия в разработке обобщенного подхода численного моделирования многомасштабных явлений.”