Personal Websites

Oleg Rogozin

Oleg Rogozin graduated from Moscow Institute of Physics and Technology (Phystech) in 2011 with honors (department of General and Applied Physics) and defended Ph.D. thesis “Numerical and asymptotic analysis of some classical problems of molecular gas dynamics” in Computing Center of RAS in May 2018.

More in the CV.

Multiscale modeling and simulation of physical processes of selective laser melting

Main publications:

  • E. L. Sharaborin, O. A. Rogozin, and A. R. Kasimov. “The Coupled Volume of Fluid and Brinkman Penalization Methods for Simulation of Incompressible Multiphase Flows”. In: Fluids 6.9 (2021). doi: 10.3390/fluids6090334.
  • V. V. Aristov, O. V. Ilyin, and O. A. Rogozin. “Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods”. In: Journal of Computational Science 40 (2020), p. 101064. doi: 10.1016/j.jocs.2019.101064. arXiv: 1806.09225.
  • O. A. Rogozin. “Slow non-isothermal flows: numerical and asymptotic analysis of the Boltzmann equation”. In: Computational Mathematics and Mathematical Physics 57.7
    (2017), pp. 1205–1229. doi: 10.1134/S0965542517060112. arXiv: 1701.05811.
  • O. Rogozin. “Numerical analysis of the nonlinear plane Couette-flow problem of a rarefied gas for hard-sphere molecules”. In: European Journal of Mechanics B/Fluids 60 (2016), pp. 148–163. doi: 10.1016/j.euromechflu.2016.06.011.
  • O. Rogozin. “Computer simulation of slightly rarefied gas flows driven by significant temperature variations and their continuum limit”. In: Theoretical and Computational Fluid Dynamics 28.6 (2014), pp. 573–587. doi: 10.1007/s00162-014-0334-5. arXiv: 1410.6711.
  • Numerical methods and high-performance computing
  • Multi-scale modeling and simulation in continuum fluid mechanics
  • Additive manufacturing technologies for metals and ceramics
  • Phase-field modeling of alloy solidification
  • Kinetic theory and rarefied gas dynamics

Past projects:

  • Computational methodology for a high-accuracy solution of the Boltzmann equation
  • Numerical analysis of the nonlinear temperature-driven flows of a rarefied gas
  • Multiscale kinetic schemes based on coupling the lattice Boltzmann and discrete-velocities methods