Nikolay Yavich

Nikolay Yavich is an applied mathematician with expertise in several areas including large-scale numerical modeling, high-performance computing, fast solvers, inverse problems, computational geophysics, and biomedical imaging.

Nikolay got his Ph.D. from the University of Houston focused on preconditioned iterative solvers for anisotropic problems. He is currently a senior research scientist at Skoltech working on data-driven methods for forward and inverse geophysical modelling.

Data-driven methods for forward and inverse geophysical modelling

* N. Yavich, N. Koshev, M. Malovichko, A. Razorenova and M. Fedorov, Conservative Finite Element Modeling of EEG and MEG on Unstructured Grids,  in IEEE Transactions on Medical Imaging, doi: 10.1109/TMI.2021.3119851.

* N.Yavich, N. Khokhlov, M. Malovichko, M. Zhdanov, Contraction Operator Transformation for the complex Heterogeneous Helmholtz Equation, Computers and Mathematics with Applications, 86 (2021) 63–72,

 * A. Razorenova, N. Yavich, M. Malovichko, M. Fedorov, N. Koshev, and D. V. Dylov, Deep learning for non-invasive cortical potential imaging, in MLCN workshop MICCAI, 2020

 * N.Koshev, N.Yavich, M Malovichko, E.Skidchenko, M.Fedorov, FEM-based Scalp-to-Cortex EEG data mapping via the solution of the Cauchy problem Journal of Inverse and Ill-posed Problems, 28(4), 2020

* N.Yavich, M.Zhdanov, Finite-element EM modelling on hexahedral grids with an FD solver as a pre-conditioner, Geophysical Journal International 223 (2), 840-850, 2020