nikolaybrilliantov



Personal Websites

Nikolai Brilliantov

                                                    

  • Polyelectrolyte-based Nano-actuators, Nano-tribology
  • Mathematical Modelling of Complex Fluids, Polyelectrolyte and Colloidal Solutions, and their biological applications
  • Mathematical Modelling of Granular Matter, Granular Hydrodynamics and Kinetics
  • Mathematical Modelling of Astrophysical Systems
  • Theory of far-from-equilibrium processes and pattern formation
  • Mathematical Modelling of systems of active particles and traffic modelling

 

  PUBLICATIONS  of  Prof.   N. V.  Brilliantov

Books:

  1.  N.V. Brilliantov and T. Poeschel, Kinetic Theory of Granular Gases,  Oxford University Press (2004).

2.   N.V. Brilliantov and T. Poeschel, Kinetic Theory of Granular Gases, Oxford University Press (2010):  Second Edition.

3. T. Poeshecl and N. V. Brilliantov (Eds.) Granular Gas Dynamics, vol. 624 of Lecture Notes in Physics, Springer (2003).

4. N.V. Brilliantov, O.P. Revokatov, Molecular Dynamic of Disordered  Media, Moscow University Press., Moscow (1996) 170 p. (in russian).

 

Papers: 

132. A. S. Bodrova, A. Osinsky, and N. V. Brilliantov, Temperature distribution in driven granular mixtures does not depend on the mechanism of dissipation, Sci. Rep., (2019) submitted.

131. N. V. Brilliantov, Time correlation functions and kinetic coefficients in systems with molecular or chemical exchange, J. Molecular Liquids, 286 (2019) 110934

130. G.Feng,  M. Chen, S. Bi,  Z. H. Goodwin, E. B. Postnikov, N. Brilliantov, M. Urbakh and A. A. Kornyshev, Phys. Rev. X  9, (2019) 021024(2019).

129. Bodrova, V. Stadnichuk, P. L. Krapivsky, J. Schmidt, N.V. Brilliantov, Kinetic regimes in aggregating systems with spontaneous and collisional fragmentation, J. Phys. A: Math. Gen.,  52 (2019) 205001.

128. I. V. Timokhin, S. A. Matveev, N. Siddharth, E. E. Tyrtyshnikov, A. P. Smirnov and N. V. Brilliantov, Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations, J. Comp. Phys. 382 (2019) 124 – 137.

127. N. V. Brilliantov, T. Poeschel, and A. Formella, Ballistic aggregation of particles with different aggregation mechanisms, Nature Communications, 9 (2018) 797.

126. S.A. Matveev, N.V.  Ampilogova, V.I.  Stadnichuk, E. E.Tyrtyshnikov, A.P. Smirnov, and N.V. Brilliantov,  Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation-fragmentation models, Computer Physics Communications,  224 (2018) 154-163.

125. N. V. Brilliantov, W. Otieno, S. A. Matveev, A. P. Smirnov, E. E. Tyrtyshnikov, and P. L. Krapivsky, Steady oscillations in aggregation-fragmentation processes, Phys. Rev. E 98 (2018) 012109.

124.S.A. Matveev, N.V. Ampilogova, V.I.  Stadnichuk, E. E.Tyrtyshnikov, A.P. Smirnov, and N.V. Brilliantov,  Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation-fragmentation models, Computer Physics Communications,  224 (2018) 154-163.

123.S.A. Matveev, P. L. Krapivsky, A.P. Smirnov, E. E.Tyrtyshnikov,  and N.V. Brilliantov,  Oscillations in aggregation-shattering processes, Phys. Rev. Lett., 119 (2017) 260601.

122.P. L. Krapivsky, W. Otieno and N. V. Brilliantov, Phase Transitions in Systems with Aggregation and Shattering, Phys. Rev. E, 96 (2017) 042138.

121.N.V. Brilliantov, Yu. A. Budkov and C. Seidel, Theoretical and numerical analysis of nano-actuators based on grafted polyelectrolytes in electric field, Faraday Discussion, 199 (2017) 487-510.

120.A.M. Tom, S. Vemparala, R. Rajesh, and N.V. Brilliantov, Regimes of strong   electrostatic collapse of a highly charged polyelectrolyte in a poor solvent, Soft Matter, 13 (2017) 1862-1872.

119.A.M. Tom, S. Vemparala, R. Rajesh, and N.V. Brilliantov, Mechanism of chain collapse of strongly charged polyelectrolytes, Phys. Rev. Lett., 117 (2016) 147801

118.N.V. Brilliantov, Yu.A. Budkov and C. Seidel, Generation of mechanical force by grafted polyelectrolytes in an electric field. Application to polyelectrolyte-based nano-devices, Philosophical Transactions A, 374 (2016) 201601403; DOI: 10.1098/rsta.2016.0143.

117.N.V. Brilliantov, Yu. A. Budkov and C. Seidel, Generation of mechanical force by grafted polyelectrolytes in an electric field, Phys. Rev. E, 93 (2016) 032505.

116.N.V. Brilliantov and J. Schmidt, Wonder of the Solar System: Icy Geysers and Liquid Water on Enceladus, in UK Success Stories in Industrial Mathematics, (Eds. P.J.Aston, A.J.Mulholland and K.M.M. Tant), p.37, Springer, 2016.

115.N.V. Brilliantov, P. L. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk and J. Schmidt,

Size distribution of particles in Saturn’s rings from aggregation and fragmentation, Proc. Natl.  Acad. Sci.  USA, 112 (2015) 9536-9541.

114.V. Stadnichuk, A. Bodrova and N. Brilliantov, Smoluchowskii aggregation-fragmentation equations: Fast numerical method to find steady-state solutions, Int. J. Mod. Phys. B, 29 (2015) 1550208.

113.N.V. Brilliantov, A.V. Pimenova and D.S. Goldobin, A dissipative force between colliding viscoelastic bodies: Rigorous approach, Europhys. Lett., 109 (2015) 14005.

112.D.S. Goldobin, E.A. Susloparov, A.V. Pimenova and N.V. Brilliantov, Collision of viscoelastic bodies: Rigorous derivation of dissipative force, Eur. Phys. J. E, 38 (2015) 55.

111.A. Bodrova, D.  Levchenko and N. Brilliantov, Universality of temperature distribution in granular gas mixtures with a steep particle size distribution, Europhys. Lett.  106 (2014) 14001.

110.D.S. Goldobin, N.V. Brilliantov, J. Levesley, M.A. Lovell, C.A. Rochelle, P.D. Jackson, A.M. Haywood, S.J. Hunter and J.G. Rees, Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments, Eur. Phys. J. E 37 (2014) 45.

109.F. Spahn, E. Vieira Neto, A.H.F. Guimaraes, A. N. Gorban’ and N.V. Brilliantov, A statistical model of aggregate fragmentation, New J. Phys., 16 (2014) 013031.

108.S.A. Matveev, E.E. Tyrtyshnikov, A.P. Smirnov, and N.V. Brilliantov, A Fast Numerical Method for Solving the Smoluchowski-Type Kinetic Equations of Aggregation and Fragmentation Processes, Computational Methods and Programming, 15 (2014) 1-8 (in russian).

107.C. Seidel, Yu.A. Budkov and N.V. Brilliantov, Field-regulated force by grafted polyelectrolytes, J. Nanoengineering and Nanosystems, 227 (2013) 142–149.

106.Yu.A. Budkov, V.I. Frolov, M.G. Kiselev and N.V. Brilliantov, Surface-induced liquid-gas transition in salt-free solutions of model charged colloids, J. Chem.  Phys., 139 (2013) 194901.

105.A. Bodrova, A. K.Dubey, S. Puri and N. Brilliantov, Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles,  Phys. Rev. E. 87 (2013) 062202.

104.N. Brilliantov, N. Albers, F. Spahn and T.Poeschel, Collision dynamics of granular particles with adhesion (vol 76, 051302, 2007), Phys. Rev. E. 87 (2013) 039904.

103.A. Bodrova, A. K. Dubey, S. Puri and N. Brilliantov, Intermediate regimes in granular Brownian motion: Superdiffusion and Subdiffusion, Phys. Rev. Lett., 109 (2012) 178001.

102.N.V. Brilliantov and C. Seidel, Grafted polyelectrolyte in strong electric field under load: Field-regulated force and chain contraction, Europhysics Lett., 97 (2012) 28006

101.A. H. F. Guimarães, N. Albers, F. Spahn, M. Seiss, E. Vieira-Neto  and N.V. Brilliantov, Aggregates in the strength and gravity regime: Particles sizes in Saturn’s rings, Icarus, 220 (2012) 660-678.

100.A. Bodrova and N.V. Brilliantov, Self-Diffusion in a granular gas of rough particles”, Granular Matter, 14 (2012) 85-90.

99.A. Bodrova, J. Schmidt, F. Spahn and N.V. Brilliantov, Adhesion and collisional release of particles in dense planetary rings, Icarus, 218 (2012) 60-68.

98.D.S. Goldobin and N.V. Brilliantov, Diffusive counter dispersion of mass in bubbly media, Phys. Rev. E 84 (2011) 056328

97.C. Salueña, L. Almazán and N.V. Brilliantov, Mechanisms of Cluster Formation in Force-Free Granular Gases, Math. Model. Nat. Phenom., 6, (2011) 175.

96.N.V. Brilliantov, Preface to the topical issue Granular Hydrodynamics, Math. Model. Nat. Phenom., 6 (2011) 1. 

95.K. Saitoh, A. Bodrova, H. Hayakawa and N.V. Brilliantov, Negative Normal Restitution Coefficient Found in Simulation of Nanocluster Collisions, Phys. Rev. Lett., 105 (2010) 238001.

94.T. Kranz, N.V. Brilliantov, T. Poeschel, and A. Zippelius, Correlation of spin and velocity in the homogeneous cooling state of a granular gas of rough particles, Eur. Phys. J.,   179 (2010) 91-111.

93.F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck & R. Srama,

Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459 (2009) 1098 -1101.

92.N.V. Brilliantov, A.S. Bodrova and P.L. Krapivsky, A model of ballistic aggregation and fragmentation, J. Stat. Mech.,  P06011 (2009)    doi: 10.1088/1742-5468/2009/06/P06011

91.N.V. Brilliantov and J. Schmidt, Aggregation kinetics in a flow: The role of particle-wall collisions, Eur. Phys. J.,   171 (2009) 15–20.

90.A.S. Bodrova and N.V. Brilliantov, Granular gas of viscoelastic particles in a homogeneous cooling state, Physica A, 388 (2009) 3315-3324.

89.A.S. Bodrova, N.V. Brilliantov and A. Yu. Loskutov, Brownian motion in granular gases of viscoelastic particles, J. Exp. Theor. Phys., 109 (2009) 946-953.

88.J. Schmidt, N.V. Brilliantov, F. Spahn, and S. Kempf, Formation of Enceladus’ Dust Plume, Nature, 451 (2008) 685-688.   

87.N. Brilliantov, J.Schmidt and F. Spahn, Geysers of Enceladus: Quantitative analysis of qualitative  models, Planetary and Space Science, 56 (2008) 1596-1606.  

86.N. Brilliantov, A.  Bodrova and F. Spahn, Dynamic equilibrium in aggregating and shattering systems, pp. 567-575, In: Advanced Problems in Mechanics. Ed. by A. Krivtzov (St. Petersburg 2008).

85.T. Poeschel, N. Brilliantov, A. Formella, M. Heckel, C. Krulle, P. Muller, C.  Saluena and T. Schwager, Contact of granular particles and the simulation of rapid flows using event-drive molecular dynamics, Eur. J. Envir. Civil. Eng., 12 (2008) pp. 827-870.

84.N. V. Brilliantov, N. Albers, F. Spahn, and T. Poeschel, Collision dynamics of granular particles with adhesion, Phys. Rev. E, 76, (2007) 051302

83.N. Brilliantov, T.Poeschel, T. Kranz and A. Zippelius, Translations and Rotations are correlated in Granular Gases, Phys. Rev. Lett., 98, (2007) 128001

82.T. Poeschel, N. Brilliantov and A. Formella, Granular Gas Cooling and Relaxation to the Steady State in Regard to the Overpopulated Tail of the Velocity Distribution, Int. J. Mod. Phys. C, 18 (2007) 701-711.

81.N. Brilliantov, J. Schmidt and F. Spahn, Nucleation and Growth of a Solid Phase in a Gas expanding into Vacuum, Int. J. Mod. Phys. C, 18 (2007) 676-684

80.N. Brilliantov and T. Poeschel, Breakdown of the Sonine expansion for the velocity distribution of granular gases, Europhys. Lett., 74 (2006) 424-430.

79.T. Poeschel, N. Brilliantov and A. Formella, Impact of high-energy tails on granular gas properties, Phys. Rev. E, 74 (2006) 041302.

78.M. Makuch, N. Brilliantov, M. Sremcevic, F. Spahn and A. Krivov, Stochastic circumplanetary dynamics of rotating non-spherical dust particles, Planetary and   Space Science, 54 (2006) 855-870.

77.N. Brilliantov and F. Spahn, Dust coagulation in equilibrium molecular gas, Mathematics and Computers in Simulation, 72 (2006) 93-98.

76.T. Poeschel, T. Schwager, N.V. Brilliantov and A. Zaikin, Rolling friction and bistability of rolling motion, in Powders and Grains, pp. 505-509. Ed. by R. Garcia-Rojo, H.J. Herrmann and S. McNamara, Balkema Publishers (New York, 2005).

75. N. Brilliantov and T. Poeschel, Adhesive interactions of viscoelastic spheres, in Powders and Grains, pp. 1247-1253. Ed. by R. Garcia-Rojo, H.J. Herrmann and S. McNamara, Balkema Publishers (New York, 2005).

74.T. Poeschel, N. Brilliantov, T. Schwager, Transient clusters in granular gases, J. Phys. C: Condens. Mat., 17 (2005) S2705-S2713.

73.N. Brilliantov and T. Poeschel, Self-diffusion in granular gases: Gree-Kubo versus Chapman-Enskog, Chaos 15 (2005) 026108.

72.T. Poeschel, N.V. Brilliantov and A. Zaikin, Bistability and noise-enhanced velocity of rolling motion, Europhys. Letters, 69 (2005) 371-377.

71.T. Poeschel, N. Brilliantov and T. Schwager, Transient clusters in granular gases with a stepwise coefficient of restitution, In: L. Pareschi, G. Russo, G. Toscani (eds.), Modelling and Numerics of Kinetic Dissipative Systems, Nova Sience (2004).

70.N.V. Brilliantov and T. Poeschel, Collision of adhesive viscoelastic particles, In: H. Hinrichsen and D.Wolf, (eds.)  The Physics of Garanular Media, Wiley-VCH, (Berlin, 2004).

69.T. Poeschel, N.V. Brilliantov, and C. Frommel, Prion Kinetics, Biophysical Journal,  87  (2004)  729.

68.N.V. Brilliantov, C. Saluena, T. Schwager and T.Poeschel, Transient structures in a granular gas, Phys. Rev. Lett., 93 (2004) 134301.

67.N.V. Brilliantov and T. Poeschel, Kinetic Theory of Granular GasesOxford University Press, 2004; (2010 – second edition).

66.T. Poeschel, and N.V. Brilliantov (Eds.),  Granular Gas Dynamics, Lecture Notes in Physics, vol. 624, Springer (2003).

65.T. Poeschel, and N.V. Brilliantov, Kinetic Integrals in the Kinetic Theory of dissipative gases, In: T. Poeschel,  N.V. Brilliantov  (Eds.) Granular Gas Dynamics, Lecture Notes in Physics, vol. 624, Springer (Berlin, 2003), p. 131-162.

64.T. Poeschel, N.V. Brilliantov, and C. Frommel, Kinetics of Prion Growth, Biophysical Journal, 85 (2003)  3460-3474.

63.N.V. Brilliantov, T. Pöschel, Hydrodynamics and transport coefficients for Granular Gases,  Phys. Rev. E, 67 (2003) 061304.

62.T. Poeschel, N.V. Brilliantov, and T. Schwager, Long-time behavior of Granular Gases with impact-velocity dependent  coefficient of restitution, Physica A, 325  (2003) 274-283.

61.T.Poeschel, N.V. Brilliantov, and T. Schwager, Violation of Molecular Chaos in dissipative gases, Int. J. Mod. Phys. C, 13, (2002) 1263-1272.

60.N.V. Brilliantov, V.V. Malinin and R.R. Netz, Systematic Field-Theory for the Hard-Core One-Component Plasma, Eur. Phys. J. D, 18,  (2002) p.339-345.

59.N.V. Brilliantov, V.V. Malinin, and A.Yu. Loskutov, Field-Theoretical analysis of critical behavior of a symmetric binary fluid, Theor. Math. Phys., 130 (2002) 123-135 (in russian).

58.N.V. Brilliantov and T. Poeschel, Hydrodynamics of granular gases of viscoelastic particles, Phil. Trans. R. Soc. Lond. A, 360 (2002) 415-429.

57.N.V. Brilliantov, and V.V. Malinin, Liquid-liquid type phase transitions and variation of the particle charge in colloidal solutions, Colloidal Journal, 64 (2002) 261-269.

56.T. Poeschel and N.V. Brilliantov, Extremal collision sequences of particles on a line:  optimal transmission of kinetic energy, Phys. Rev. E, 63 (2001) 021505.

55.N.V. Brilliantov and T. Poeschel, Granular Gases — the early stage, in Coherent Structures in Complex Systems, ed. by D. Reguera, L.L. Bonilla, M. Rubi, Lecture Notes in Physics, vol.567, Springer (2001) p.408-419.

54.N.V. Brilliantov and V.V. Malinin, Additivity analysis of the electrostatic and hard-core components of the Equation of state of the hard-core one-component plasma, Bull. Mosc. State Univ., Ser.3, vol. 2 (2001) 27-30 (in russian).

53.N.V. Brilliantov and T. Poeschel, Self-diffusion in granular gases, Phys. Rev. E, 61 (2000) 1716-1721.

52.N.V. Brilliantov and T. Poeschel, Deviation from Maxwell Distribution in Granular Gases with Constant Restitution Coefficient. Phys. Rev. E, 61 (2000) 2809-2812.

51.N.V. Brilliantov and T. Poeschel, Velocity distribution in granular gases of viscoelastic particles, Phys. Rev. E, 61 (2000) 5573-5587.

50.N.V. Brilliantov, T. Poeschel, Granular Gases with Impact-velocity Dependent Restitution Coefficient, in Granular Gases, ed. by S.Luding, and T.Poeschel, Lecture Notes in Physics vol. 564, Springer (Berlin, 2000), p. 100.

49.T. Poeschel and N.V. Brilliantov, Chains of Viscoelastic Spheres, in Granular Gases, ed. by S.Luding, and T.Poeschel, Lecture Notes in Physics vol. 564, Springer (Berlin, 2000), p. 203.

48.A.Yu. Andrienko, N.V. Brilliantov, and J. Kurths, Complexity of two-dimensional patterns. Eur. Phys. J. B, 15 (2000) 539-546

47.R. Ramírez, T. Poeschel, N.V. Brilliantov, T. Schwager, Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E, 60 (1999) 4465.

46.N.V. Brilliantov, T. Poeschel, Rolling as a “continuing collision”,  Europhys. J. B, 12, (1999) 299-301.  

45.T. Poeschel, T. Schwager, and N. V. Brilliantov, Rolling of a hard cylinder on a viscous plane, Europhys. Phys. J. B, 10, (1999) 169-174.

44.N. V. Brilliantov, D. V. Kuznetsov and R. Klein, Chain Collapse and Counterion Condensation in Dilute Polyelectrolyte Solutions, Phys. Rev. Lett., 81 (1998) 1433.

43.N. V. Brilliantov and T. Poeschel, Rolling friction of a soft sphere on a hard plane. Europhys. Letters, 42 (1998) 511.

42.N.V. Brilliantov, Effective magnetic Hamiltonian and Ginzburg criterion for fluids.  Phys. Rev. E, 58 (1998) 2628.

41.N. V. Brilliantov, Yu. A. Andrienko, P. L. Krapivsky, and J. Kurths, Polydisperse Adsorption: Pattern Formation Kinetics, Fractal Properties, and Transition to Order. Phys. Rev. E, 58 (1998) 3530-3536.  

40.N. Brilliantov, and J. Valleau, Thermodynamic Scaling Monte Carlo Study of the Liquid-Gas Transition in the Square-Well   Fluid. J. Chem. Phys., 108 (1998) 1115-1122.

39.N. Brilliantov, and J. Valleau, Effective Hamiltonian Analysis of Fluid Criticality and Application to the Square-Well Fluid. J. Chem. Phys., 108 (1998) 1123-1130.

38.N.V. Brilliantov, C. Bagnuls and C.Bervillier, Peculiarity of the Coulombic Criticality?  Phys. Lett. A, 245 (1998) 274.

37.N.V. Brilliantov, N.G. Vostrikova, and O.P. Revokatov, Role of electrical interactions in rotational motion of charged solute in polar solvents. J. Phys. Chem. B, 102 (1998) 6299-6302.

36.N.V. Brilliantov, Accurate First-Principle Equation of State for the One-Component Plasma, Contrib.  to Plasma Physics, 38 (1998) 489-499.

35.N. V. Brilliantov, Yu. A. Andrienko, and P.L. Krapivsky, Pattern formation in size-polydisperse adsorption: Transition to order, Physica A, 239 (1997) 267-275.

34.N. V. Brilliantov, Yu. A. Andrienko, P.L. Krapivsky, and J. Kurths, Fractal formation and ordering in random sequential adsorption. Phys. Rev. Lett., 76 (1996) 4058-4061.

33.N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poeschel, Model for collisions in granular gases, Phys. Rev. E, 53 (1996) 5382-5392.

32.N.V. Brilliantov, O.P. Revokatov, Molecular Motion in Disordered Media. Moscow University Press, Moscow (1996) 170 p. (in russian).

31.N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poeschel, The collisions of particles in granular systems. Physica A, 231 (1996) 417-424.

30.J.-M. Hertzsch, F. Spahn, and N.V. Brilliantov, On low-velocity collisions of viscoelastic particles, J. de Phys. II France, 5 (1995) 1725 – 1738.

29.F. Spahn, J.-M. Hertzsch, and N.V. Brilliantov, The Role of Particle-Collisions for the Dynamics in Planetary Rings. Chaos, Solitons and Fractals, 5 (1995) 1945 – 1964.

28.N.V. Brilliantov, Yu.A. Andrienko, and P.L. Krapivsky, Random Space-Filling Tiling: Fractal Properties and Kinetics. J. Phys. A: Math. Gen., 27 (1994) L381-L386.

 27.Yu.A. Andrienko, N.V. Brilliantov, and P.L. Krapivsky, Pattern formation by growing droplets:  The touch-and-stop model of growth. J. Stat. Phys., 75 (1994) 507-523.

26.F. Spahn, N.V. Brilliantov, J.-M. Hertzsch, and T. Poeschel, On collisions between granular particles: Application to planetary rings. Bull. Am. Astron. Soc., 26 (1994) 1143-1144.

25.Yu. M. Petrusevitch and N. V. Brilliantov, Dielectric properties of protein solutions and interaction of electromagnetic fields with biosystems. Bull. Mosc. State Univ., Ser.3, vol.4 (1994) 63-67 (in russian).

24.N.V. Brilliantov, Phase Transitions in Solutions of Variably Ionizable Particles. Phys. Rev. E, 48 (1993) 4536.

23.N.V. Brilliantov, N.G. Vostrikova, V.P. Denisov, Yu.M. Petrusievich and O.P. Revokatov , Influence of dielectric friction and near-surface  increase of viscosity  on rotational  Brownian  motion  of  charged biopolymers in solution. Biophysical Chemistry, 46 (1993) 227-236

22.Yu. A. Andrienko, N. V. Brilliantov, and P. L. Krapivsky, Nucleation and growth in systems with many stable phases. Phys.  Rev.  A, 45 (1992) 2263-2269.

21.N.V. Brilliantov, and N.G. Vostrikova, Rotational motion of Brownian  particles with surface charge. Molecular Physics, 77 (1992) 957.

20.N.V. Brilliantov, A.I. Rudenko, Yu.V. Shcherbakov and V.V. Zverev, DLTS studies of low temperature annealing in lithium-doped silicon. Physica Status Solidi A, 130 (1992) 53-60.

19.N.V. Brilliantov, V.P. Denisov, and P.L. Krapivsky, Generalized Stokes-Einstein-Debye relation for charged Brownian particles in solution. Physica A, 175 (1991) 293-304.

18.N.V. Brilliantov, and P.L. Krapivsky, Stokes laws for ions in solutions with ion-induced inhomogeneity. J. Phys. Chem., 95 (1991) 6055-6057.

17.N. V. Brilliantov, and P. L. Krapivsky, Nonscaling and source-induced scaling behavior in aggregation models of movable monomers and immovable clusters. J. Phys. A: Math. Gen., 24 (1991) 4789-4803.

16.N.V. Brilliantov, A.I. Rudenko, Yu.V. Shcherbakov and V.V. Zverev, Anomalous low temperature annealing of electron irradiated lithium-doped silicon solar cell, Physica Status Solidi A, 121 N2 (1990) K155-K158.

15.N.V. Brilliantov, V.A. Vol’sky, A.I. Kviatkievich and V.N. Timoshkin, Dif fusion of charged impurities in semiconductors. Account for the correlation effects, Sov. Phys. and Technics of Semiconductors 24, N5 (1990) 860-865 (in russian).

14.A.O. Ait, M.V. Alfimov, N.V. Brilliantov, A.E. Galashin and N.K. Zaitsev, The development kinetics of black-and-white aghal photographic-emulsions analyzed with the help of stochastic model, Journal of scientific photography, 35, N2 (1990) 96-102 (in russian).

13.N.V. Brilliantov, A.I. Kviatkievich, Yu.M. Petrusievich and O. P. Revokatov, Rotational Brownian motion of polar macromolecules in  solutions. Dokl. Akad.  Sci. USSR, 304, N2 (1989) 340-345 (in russian).

12.N.V. Brilliantov, and P.L. Krapivsky, Kinetic models of clusterization of point defects in solids. Sov. Phys. Solid State, 31, N2 (1989) 172-178 (in russian).

11.N.V. Brilliantov,  P.L. Krapivsky, and V.A. Vol’sky, Diffusion-limited growth of surface structures: Relation between fractal dimension and growth kinetics, Sov. Phys. Surface, N12 (1989) 30-35 (in russian).

10.N.V. Brilliantov, and A.I. Kviatkievich, Concentration dependence of the diffusion coefficient for interacting defects in solids. Sov. Phys. Solid State, 31, N12 (1989) 63-70 (in russian).

9.N.V. Brilliantov, A.I. Kviatkievich, Yu.M. Petrusievich and O. P. Revokatov, Influence of  macromolecules  dipolar moment on the frequency dependence of the NMR-relaxation  coefficients of biopolymers  in  solution. Radiospektroskopiya, Perm, 1988, 150-154 (in russian).

8.N.V. Brilliantov and O.P. Revokatov, Relation  between molecular  correlation  times for  the rotational and translational motion in dense fluids, Radiospektroskopiya, Perm, 1985 , 259-266 (in russian).

7.N.V. Brilliantov and O.P. Revokatov, Hard-spheres model and molecular motion in dense fluids, Izd. VINITI, Moscow, (1985), 1-115 (in russian).

6.N.V. Brilliantov and O.P. Revokatov, Relation between pressure and dynamical coefficients for the hard-sphere system, Sov. J. Phys. Chem., 58 (1984) 783-786 (in russian).

5.N.V. Brilliantov and O.P. Revokatov, Relation between momentum and angular momentum correlation times. Analysis of the uncorrelated successive binary-collision approximation, Chem. Phys. Lett., 104 (1984) 444-447.

4.N.V. Brilliantov and O.P. Revokatov, Relation between self-diffusion coefficient and rotational-diffusion coefficient in gases of moderate density. Sov. Phys. JETP, 60 (1984) 82-83 (in russian).

3.Yu.A. Andrienko, N.V. Brilliantov and O.P. Revokatov, The temperature dependence of density and pressure on the melting line for inert gases. Sov. J. Phys. Chem., 58 (1984) 1840-1842 (in russian)

2.N.V. Brilliantov and O.P. Revokatov, Autocorrelation functions of rotational and translational motion in simple liquids. Bull. Mosc. State Univ., Ser.3, v.24, N1 (1983) 76-79 (in russian).

1.N.V. Brilliantov and O.P. Revokatov, Correlation function of momentum and angular momentum for the cell model of liquids, Radiospektroskopiya , Perm, 1983 ,12-19 (in russian).

 

 

 

 

Fellowships and awards:

  •  Max-Planck Fellowship in 1993 and 2000, Germany
  •  Fellowship of the Isaac Newton Institute for Mathematical Science, Cambridge, UK 2010

 

Editorship:

  • Member of the Editorial Board of the Scientific Reports since 2018
  • Member of the Editorial Board of the Physical Review Letters  (Divisional Associated Editor for Condensed Matter) in 2011-2016
  • Editor (together with T. Poeschel) of the monograph “Granular Gas Dynamics”,   Springer (2003).
  • Guest Editor of the topical issue “Granular Hydrodynamics” of the journal Mathematical Modeling of Natural Phenomena (2010).

 

 Membership in funding organizations:

  • EPSRC Peer Review Associate College member since 2016   

Membership in International Scientific Committees:

  • Member of the Scientific Committee of the International Conference “Discrete Simulation of Fluid Dynamics” in 2001-2013.
  • Coordinator of Group A5 of the European Scientific Network Proposal AMEBA (Advanced Mathematics Efficiency in Biology and Astrodynamics) in 2008-2010

Referee work:

  • A distinguished referee of the Europhysics Letters in 2012
  • A distinguished referee of the Physical Review in 2017
  • Referee of funding organizations:

Regular Referee of EPSRC research grants

Regular Referee of the FONDECYT National Research Funding, Chile

Referee for the National Science Foundation (NSF), USA

Positive Media Coverage:

In newspapers:

     

            In broadcast:

             BBC (2009): http://news.bbc.co.uk/1/hi/sci/tech/8115148.stm

             Russian TV: http://tvkultura.ru/article/show/article_id/141022/

             In Journals:  

             Reviews on our book “Kinetic Theory of Granular Gases” (OUP, 2004):              

  •   Physics Today, 58 (2005) 84.
  •    Stat. Phys. 118 (2005) 12
  •    Phys. A: Math. Gen. 38 (2005) 10257

 

             In electronic news agencies: