Personal Websites

Dmitry Aksenov

Professor: Andriy Zhugayevych


Dmitry started his research activity in 2008 being a second year student at Belgorod State University (BSU). He was working in the Laboratory of Theoretical Investigations and Computer Simulation under supervision of A.G. Lipnitskii studying grain boundary segregation of impurities and precipitation of Ti-C phases in titanium alloys using quantum mechanics approaches. Dmitry graduated from BSU with honors in 2011, and defended his Candidate of Sciences degree in Physics and Mathematics in 2014. Dmitry won DAAD scholarship for young scientists in 2013 to continue his research at Max-Planck-Institute for Iron Research (MPIE), Düsseldorf, Germany. He worked there in the Computational Materials Design Department headed by Prof. J. Neugebauer with the assistance of T. Hickel.

At Skoltech, Dmitry use computational methods to study and develop inorganic materials. The main focus is on cathode materials for secondary metal-ion batteries (Li-ion, Na-ion, K-ion). Using especially developed tools for high-throughput DFT calculations [SIMAN] Dmitry is searching for cathode materials with stable structure, low migration barriers of diffusion and high energy density. 


Computational materials science, transition metal oxides, metallic alloys, defects of atomic structure, interface segregation, diffusion, metal-ion battery cathode materials, density functional theory, development of computational techniques.

Current projects:

Density functional theory study of cathode materials for battery applications.

Study of alkali ion diffusion mechanisms in battery cathode materials (LiFePO4, Na2FePO4F, KVPO4F).

Study of point and surface defects in battery cathode materials.

Prediction of catalytic activity of transition metal oxides.

Development of computational framework SIMAN for high-throughput DFT calculations.

Development of materials database of CEE CREI.


Past projects:

Study of grain boundary segregation and precipitation in titanium using first-principles,

Study of radiation swelling mechanism in vanadium radiation-resistant alloy

Prediction of hydrogen solubility in titanium

  1. D.A. Aksyonov, S.S. Fedotov, S.S. Stevenson, A. Zhugayevych, Understanding migration barriers for monovalent ion insertion in transition metal oxide and phosphate based cathode materials: A DFT study. Computational Materials Science, 154, 449-458 (2018)
  2. S.S. Fedotov, A.S. Samarin, V.A. Nikitina, D.A. Aksyonov, S.A. Sokolov, A. Zhugayevych, K.J. Stevenson, N.R. Khasanova, A.M. Abakumov, E.V. Antipov, Reversible facile Rb+ and K+ ions de/insertion in a KTiOPO 4-type RbVPO 4 F cathode material. J. Mater. Chem. A 6 14420 (2018).
  3. I. V. Tereshchenko, D.А. Aksyonov, O. A. Drozhzhin, I. A. Presniakov, A. V. Sobolev, A. Zhugayevych, K. Stevenson, E. V. Antipov, A. M. Abakumov, The role of semi-labile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes  J. Am. Chem. Soc., 140 (11), 3994–4003 (2018)
  4. D.A. Aksyonov, A.G. Lipnitskii, Solubility and grain boundary segregation of iron in hcp titanium: A computational study. Comput. Mater. Sci. 137, 266–272 (2017).
  5. A.O. Boev, D.A. Aksyonov, A.I. Kartamyshev, V.N. Maksimenko, I.V Nelasov,  A.G. Lipnitskii, Interaction of Ti and Cr atoms with point defects in bcc vanadium: A DFT study. J. Nucl. Mater. 492, 14–21 (2017).
  6. D.A. Aksyonov,  T. Hickel, J. Neugebauer, A.G. Lipnitskii,  The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation. J. Phys. Condens. Matter 28, 385001 (2016).
  7. D.O. Poletaev, D.A. Aksyonov, D.D. Vo, A.G. Lipnitskii, Hydrogen solubility in hcp titanium with the account of vacancy complexes and hydrides: A DFT study. Comput. Mater. Sci. 114, 199–208 (2016).
  8. D.O. Poletaev, A.G. Lipnitskii, A.I. Kartamyshev,  D.A. Aksyonov, E.S. Tkachev, S.S. Manokhin, Y.R., Kolobov, Ab initio-based prediction and TEM study of silicide precipitation in titanium. Comput. Mater. Sci. 95, 456–463 (2014).
  9. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov,  Grain boundary segregation of C, N and O in hexagonal close-packed titanium from first principles. Model. Simul. Mater. Sci. Eng. 21, 75009 (2013).
  10. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov, Ab initio study of Ti–C precipitates in hcp titanium: Formation energies, elastic moduli and theoretical diffraction patterns. Comput. Mater. Sci. 65, 434–441 (2012).
  11. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov, Ab initio calculation of characteristics of a hcp Ti-C system in α-titanium. Russ. Phys. J. 52, 1047–1051 (2009).

Belgorod State University, Belgorod, RU, Physics and Engineering, Specialist, 2011

Belgorod State University, Belgorod, RU, Condensed Matter Physics, Candidate of Science, 2014

2014 DAAD Scholarship: «Research fellowship for young scientists»

2013 Scholarship of the Russian Federation President for young scientists

2013 Scholarship of the Belgorod governor for young scientists

2011 Scholarship of the Russian Federation President for young scientists

2010 Scholarship of the Russian Federation Government for young scientists