Personal Websites

Dmitry Aksyonov

Dmitry leads computational materials group, studying materials for next-generation metal-ion batteries in tight collaboration with experimentalists. Currently the group is focusing on investigation of electrode/electrolyte interfaces in metal-ion batteries, including design of highly stable interfaces with low ionic resistivity. The group leverages high-throughput aproach in materials modeling and develop special software SIMAN for automatization of calculations.

Dmitry started his research at Belgorod State University (BSU) in 2008 studying grain boundary segregation of C,N,O, Fe impurities and precipitation of Ti-C phases in hcp titanium using DFT methods. In 2014 he defended his Candidate of Sciences degree in Physics and Mathematics. During 2013-2014 Dmitry worked at Max-Planck-Institute for Iron Research (MPIE), Düsseldorf, with T. Hickel and Prof. J. Neugebauer.

In 2016 Dmitry got a position of Research Scientist at Skoltech, where he started to  study new inorganic materials for cathodes of secondary metal-ion batteries (Li-ion, Na-ion, K-ion, Li-air) using computational methods. Over the years working at Skoltech Center for Energy Science and Technology, Dmitry has expanded materials development for next-generation metal-ion batteries using computational techniques. His research having both fundamental and applied relevance was focused on improving battery materials’ safety and lifespan as well as searching for new energy materials. In collaboration with his colleagues, Dmitry helped to leverage complex structure-property relationships in newly developed battery materials paving the path for their improvement and successful commercialization.

If you are interested in computational materials science and would like to work in my group during your Master or PhD study at Skoltech send me your CV.


Available projects for students:

  1. Study of electrochemical activity for surfaces of cathode materials used in metal-ion batteries using computer modelling
  2. Study of electronic correlations influence on the properties of transition metal layered oxides with metallic states.
  3. Development of method for searching of new transition metal polyanionic structures using evolutionary and random sorting algorithms.
  4. Development of method for searching percolation paths in complex polyanionic crystal structures
  5. Development of web-interface for online DFT calculations of materials properties
  6. Creation of a method for the automatic construction of empirical potentials based on DFT calculations.
  7. Creation of a method for automatic calculation of IR spectra


Current projects:

  1. Computational design of electrode/electrolyte interfaces for metal-ion batteries
  2. DFT study of cathode materials for battery applications.
  3. Study of alkali ion diffusion mechanisms in battery cathode materials (LiFePO4, Na2FePO4F, KVPO4F, etc).
  4. Study of point and surface defects in battery cathode materials.
  5. Development of computational framework SIMAN for high-throughput DFT calculations.


Past projects:

  1. Prediction of catalytic activity of transition metal oxides.
  2. Study of grain boundary segregation and precipitation in titanium using first-principles
  3. Study of radiation swelling mechanism in vanadium radiation-resistant alloy
  4. Prediction of hydrogen solubility in titanium
  5. Development of computational materials database.


My current group:

    1. 2015-current, Dr. Anton Boev, postdoc at Skoltech
    2. 2020- current, Arseniy Burov, PhD  at Skoltech
    3. 2021- current, Artem Dembitskiy, PhD at Skoltech, Co-advising with Prof. S.Fedotov
    4. 2020- current, Alexander Kokin, MSc  at MSU


Previous members

  1. 2018-2020, MSc Irina Varlamova, Skoltech
  2. 2019, intern Flor Garza, MIT
  3. 2020-2021, MSc German Vershinin, Bauman State
  4. 2021-2022, MSc Antonio Pancho, Bauman State
  5. 2018-2020, Daniel Poletaev, postdoc at BelSU

Keywords: Computational materials science, transition metal oxides, metallic alloys, defects of atomic structure, interface segregation, diffusion, metal-ion battery cathode materials, density functional theory, development of computational techniques.


For full publication list see here  Google Scholar


  1. S.D. Shraer, N.D. Luchinin, I.A. Trussov, D.A. Aksyonov, A. V Morozov, S. V Ryazantsev,
    A.R. Iarchuk, P.A. Morozova, V.A. Nikitina, K.J. Stevenson, E. V Antipov, A.M. Abakumov,
    S.S. Fedotov, , Development of vanadium-based polyanion positive electrode active materials
    for high-voltage sodium-based batteries, Nat. Commun. 13 (2022) 4097. IF=17.763 Q1
  2. A. V Morozov, H. Paik, A.O. Boev, D.A. Aksyonov, S.A. Lipovskikh, K.J. Stevenson, J.L.M.
    Rupp, A.M. Abakumov, Thermodynamics as a Driving Factor of LiCoO2 Grain Growth on
    Nanocrystalline Ta-LLZO Thin Films for All-Solid-State Batteries, ACS Appl. Mater. Interfaces
    14 (2022) 39907–39916 IF=10.383 Q1
  3. A. V Morozov, I.A. Moiseev, A.A. Savina, A.O. Boev, D.A. Aksyonov, L. Zhang, P.A.
    Morozova, V.A. Nikitina, E.M. Pazhetnov, E.J. Berg, S.S. Fedotov, J.-M. Tarascon, E. V
    Antipov, A.M. Abakumov, Retardation of Structure Densification by Increasing Covalency in
    Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries,, Chem. Mater. IF=10.508 Q1
  4. R.R. Kapaev, A. Zhugayevych, S. V Ryazantsev, D.A. Aksyonov, D. Novichkov, P.I. Matveev,
    K.J. Stevenson, Charge storage mechanisms of a –d conjugated polymer for advanced alkali-ion
    battery anodes, Chem. Sci. 13 (2022) 8161–8170. IF=9.969 Q1
  5. S.Y. Luchkin, M.A. Kirsanova, D.A. Aksyonov, S.A. Lipovskikh, V.A. Nikitina, A.M. Abaku-
    mov, K.J. Stevenson, Cycling-Driven Electrochemical Activation of Li-Rich NMC Positive
    Electrodes for Li-Ion Batteries, ACS Appl. Energy Mater. 5 (2022) 7758–7769. IF=6.959 Q1
  6. A.D. Dembitskiy, D.A. Aksyonov, A.M. Abakumov, S.S. Fedotov, NH4+-based frameworks
    as a platform for designing electrodes and solid electrolytes for Na-ion batteries: A screening
    approach, Solid State Ionics 374 (2022) 115810. IF=3.785 Q12022 A.A. Savina, V. V. Saiutina, A. V. Morozov, A.O. Boev, D.A. Aksyonov, C. Dejoie, M.
    Batuk, S. Bals, J. Hadermann, A.M. Abakumov, Chemistry, Local Molybdenum Clustering,
    and Electrochemistry in the Li 2+x Mo 1−x O 3 Solid Solutions, Inorg. Chem. 61 (2022) 5637–5652.
    IF=5.165 Q1


1. D.A. Aksyonov, V.A. Nikitina, Charge transfer through interfaces in metal-ion intercalation
systems, chapter in Comprehensive Inorganic Chemistry III

2. D.A. Aksyonov, I. Varlamova, I.A. Trussov, A.A. Savina, A. Senyshyn, K.J. Stevenson, A.M.
Abakumov, A. Zhugayevych, S.S. Fedotov, Hydroxyl Defects in LiFePOCathode Material:
DFT+U and an Experimental Study, Inorg. Chem. 60 (2021) 5497–5506. IF=5.165 Q1
3. A.O. Boev, S.S. Fedotov, K.J. Stevenson, D.A. Aksyonov, High-throughput computational
screening of cathode materials for Li-O2battery, Comput. Mater. Sci. 197 (2021) 110592.
IF=3.3 Q1
4. A.O. Boev, S.S. Fedotov, A.M. Abakumov, K.J. Stevenson, G. Henkelman, D.A. Aksyonov,
The role of antisite defect pairs in surface reconstruction of layered AMO2oxides: A DFT+U
study, Appl. Surf. Sci. 537(2021) 147750. IF = 6.707 Q1
5. A.M. Abakumov, C. Li, A. Boev, D.A. Aksyonov, A.A. Savina, T.A. Abakumova, G. Van
Tendeloo, S. Bals, Grain Boundaries as a Diffusion-Limiting Factor in Lithium-Rich NMC
Cathodes for High-Energy Lithium-Ion Batteries, ACS Appl. Energy Mater. 4 (2021) 6777–6786.
IF=6.024 Q1
6. S.V. Porokhin, V.A. Nikitina, D.A. Aksyonov, D.S. Filimonov, E.M. Pazhetnov, I.V. Mikheev,
A.M. Abakumov, Mixed-Cation Perovskite La0.6Ca0.4Fe0.7Ni0.3O2.9 as a Stable and Efficient
Catalyst for the Oxygen Evolution Reaction, ACS Catal. 11 (2021) 8338–8348. IF=13.084
7. N.D. Luchinin, D.A. Aksyonov, A.V Morozov, S.V Ryazantsev, V.A. Nikitina, A.M. Abaku-
mov, E.V Antipov, S.S. Fedotov, α-TiPO4 as a Negative Electrode Material for Lithium-Ion
Batteries, Inorg. Chem. 60 (2021) 12237–12246. IF=5.165 Q1

8. A.O. Boev, I. V Nelasov, A.G. Lipnitskii, A.I. Kartamyshev, D.A. Aksyonov, Self-point defect
trapping responsible for radiation swelling reduction in V–Ti alloys, Solid State Commun. 329
(2021) 114252. IF=1.521 Q2
9. M.R. Gazizov, A.O. Boev, C.D. Marioara, S.J. Andersen, R. Holmestad, R.O. Kaibyshev, D.A.
Aksyonov, V.S. Krasnikov, The unique hybrid precipitate in a peak-aged Al-Cu-Mg-Ag alloy,
Scr. Mater. 194 (2021) 113669. IF=5.079 Q1
10. M.R. Gazizov, A.O. Boev ,C.D. Marioara, R. Holmestad, D.A. Aksyonov, M. Yu. Gazizova,
R.O. Kaibyshev Precipitate/matrix incompatibilities related to the 111 Al plates in an Al-Cu-
Mg-Ag alloy, Materials Characterization 182 (2021) 111586. IF=4.342 Q1


  1. D.A. Aksyonov, I. Varlamova, I.A. Trussov, A.A. Savina, A. Senyshyn, K.J. Stevenson, A.M. Abakumov, A. Zhugayevych, S.S. Fedotov, Hydroxyl Defects in LiFePO4 Cathode Material: DFT+U and an Experimental Study, Inorg. Chem. 60 (2021) 5497–5506.
  2. A.O. Boev, S.S. Fedotov, A.M. Abakumov, K.J. Stevenson, G. Henkelman, D.A. Aksyonov, The role of antisite defect pairs in surface reconstruction of layered AMO2 oxides: A DFT+ U study, Appl. Surf. Sci. (2020) 147750.
  3. S.S. Fedotov, N. D. Luchinin, D.A. Aksyonov, A. V. Morozov, S.V. Ryazantsev, K. J. Stevenson, A.M. Abakumov, E.V. Antipov, Titanium-based potassium-ion battery positive electrode with  extraordinarily high redox potential, Nature Communications, 11, 1484 (2020). IF = 11.88
  4. M.A. Kirsanova, A.S. Akmaev, D.A. Aksyonov, S. V Ryazantsev, V.A. Nikitina, D.S. Filimonov, M. Avdeev, A.M. Abakumov, Monoclinic α-Na 2 FePO 4 F with Strong Antisite Disorder and Enhanced Na + Diffusion, Inorg. Chem. 59 (2020) 16225–16237.
  5. I. V. Tereshchenko, D.A. Aksyonov, A. Zhugayevych, E. V. Antipov, A.M. Abakumov, Reversible electrochemical potassium deintercalation from >4 V positive electrode material K6(VO)2(V2O3)2(PO4)4(P2O7), Solid State Ionics. 357 (2020) 115468.
  6. Kartamyshev, A.I., Lipnitskii, A.G., Boev, A.O., Nelasov, I.V., Maksimenko, V.N., Aksyonov, D.A. and Nguyen, T.K., 2020. Angular dependent interatomic potential for Ti–V system for molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering,  28(5), p.055010.


  1. Drozhzhin, O.A., Sobolev, A.V., Sumanov, V.D., Glazkova, I.S., Aksyonov, D., Grebenshchikova, A.D., Tyablikov, O.A., Alekseeva, A.M., Mikheev, I.V., Dovgaliuk, I. and Chernyshov, D., 2019. Exploring the Origin of the Superior Electrochemical Performance of Hydrothermally Prepared Li-Rich Lithium Iron Phosphate Li1+δ Fe1-δ PO 4 . The Journal of Physical Chemistry C.
  2. Fedotov, S.S., Aksyonov, D.A., Samarin, A.S., Karakulina, O.M., Hadermann, J., Stevenson, K.J., Khasanova, N.R., Abakumov, A.M. and Antipov, E.V., 2019. Tuning the Crystal Structure of A2CoPO4F (A= Li, Na) Fluoride‐Phosphates: A New Layered Polymorph of LiNaCoPO4F. European Journal of Inorganic Chemistry,, IF=2.578
  3. V.D. Sumanov, D.А. Aksyonov, O.A. Drozhzhin, I.A. Presniakov, A.V. Sobolev., A.A. Tsirlin, D. Rupasov, A. Senyshyn, K.J. Stevenson, E. Antipov, A.M. Abakumov, “Hydrotriphylites” as cathode materials for Li-ion batteries, submitted to Chemistry of Materials 31, no. 14,  5035-5046 (2019). IF = 9.890 
  4. O.A. Drozhzhin, I.V. Tertov, A.M. Alekseeva, D.A. Aksyonov, K.J. Stevenson, A.M. Abakumov, E.V. Antipov, β-NaVP2O7 as a superior electrode material for Na-ion batteries,  Chemistry of Materials 31, 7463-7469, (2019). IF = 9.890 
  5. A.O. Boev, D.A. Aksyonov, A.I. Kartamyshev, V.N. Maksimenko, I.V Nelasov,  A.G. Lipnitskii, Self-point defect trapping responsible for radiation swelling reduction in V-Ti alloys, under submission to Journal of Nuclear Materials (2019). IF = 2.51 
  6. M.A. Kirsanova, V.D. Okatenko, D.A. Aksyonov, R.P. Forslund, J.T. Mefford, K.J. Stevenson, and A.M. Abakumov, Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo4O7.3 oxide, Journal of Materials Chemistry A. 7, 1, 330–341 (2019).  IF = 9.931 
  7. M.A. Kirsanova,  D.A. Aksyonov,  O.V. Maximova, L.V. Shvanskaya, A.N. Vasiliev, A.A. Tsirlin, and A.M. Abakumov, Crystal Structures and Low-Dimensional Ferromagnetism of Sodium Nickel Phosphates Na5Ni2(PO4)3·H2O and Na6Ni2(PO4)3OH. Inorganic Chemistry. 58, 1, 610–621 (2019). IF = 4.70


  1. D.A. Aksyonov, S.S. Fedotov, S.S. Stevenson, A. Zhugayevych, Understanding migration barriers for monovalent ion insertion in transition metal oxide and phosphate based cathode materials: A DFT study. Computational Materials Science, 154, 449-458 (2018)
  2. S.S. Fedotov, A.S. Samarin, V.A. Nikitina, D.A. Aksyonov, S.A. Sokolov, A. Zhugayevych, K.J. Stevenson, N.R. Khasanova, A.M. Abakumov, E.V. Antipov, Reversible facile Rb+ and K+ ions de/insertion in a KTiOPO 4-type RbVPO 4 F cathode material. J. Mater. Chem. A 6 14420 (2018).
  3. I. V. Tereshchenko, D.А. Aksyonov, O. A. Drozhzhin, I. A. Presniakov, A. V. Sobolev, A. Zhugayevych, K. Stevenson, E. V. Antipov, A. M. Abakumov, The role of semi-labile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes  J. Am. Chem. Soc., 140 (11), 3994–4003 (2018)
  4. D.A. Aksyonov, A.G. Lipnitskii, Solubility and grain boundary segregation of iron in hcp titanium: A computational study. Comput. Mater. Sci. 137, 266–272 (2017).
  5. A.O. Boev, D.A. Aksyonov, A.I. Kartamyshev, V.N. Maksimenko, I.V Nelasov,  A.G. Lipnitskii, Interaction of Ti and Cr atoms with point defects in bcc vanadium: A DFT study. J. Nucl. Mater. 492, 14–21 (2017).
  6. D.A. Aksyonov,  T. Hickel, J. Neugebauer, A.G. Lipnitskii,  The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation. J. Phys. Condens. Matter 28, 385001 (2016).
  7. D.O. Poletaev, D.A. Aksyonov, D.D. Vo, A.G. Lipnitskii, Hydrogen solubility in hcp titanium with the account of vacancy complexes and hydrides: A DFT study. Comput. Mater. Sci. 114, 199–208 (2016).
  8. D.O. Poletaev, A.G. Lipnitskii, A.I. Kartamyshev,  D.A. Aksyonov, E.S. Tkachev, S.S. Manokhin, Y.R., Kolobov, Ab initio-based prediction and TEM study of silicide precipitation in titanium. Comput. Mater. Sci. 95, 456–463 (2014).
  9. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov,  Grain boundary segregation of C, N and O in hexagonal close-packed titanium from first principles. Model. Simul. Mater. Sci. Eng. 21, 75009 (2013).
  10. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov, Ab initio study of Ti–C precipitates in hcp titanium: Formation energies, elastic moduli and theoretical diffraction patterns. Comput. Mater. Sci. 65, 434–441 (2012).
  11. D.A. Aksyonov, A.G. Lipnitskii, Y.R., Kolobov, Ab initio calculation of characteristics of a hcp Ti-C system in α-titanium. Russ. Phys. J. 52, 1047–1051 (2009).

Belgorod State University, Belgorod, RU, Physics and Engineering, Specialist, 2011

Belgorod State University, Belgorod, RU, Condensed Matter Physics, Candidate of Science, 2014

2021 Moscow Government Award for Young Scientists in Chemistry and Materials Science together
with Prof. S. Fedotov and Prof. V. Nikitina

2014 DAAD Scholarship: «Research fellowship for young scientists»

2013 Scholarship of the Russian Federation President for young scientists

2013 Scholarship of the Belgorod governor for young scientists

2011 Scholarship of the Russian Federation President for young scientists

2010 Scholarship of the Russian Federation Government for young scientists

Anton Boev
Research Scientist
Dmitrii Govorov
Junior Research Scientist