dkolomenskiy

Dmitry Kolomenskiy

Dr. Dmitry Kolomenskiy is a specialist in fluid mechanics. He received his Ph.D. degree from the University of Aix-Marseille (France), and held academic positions at universities and research institutes in France, Canada and Japan, prior to joining Skoltech. Dr. Kolomenskiy was a postdoctoral fellow at CERFACS (France), McGill University (Canada), Chiba University (Japan), a project scientist at JAMSTEC (Japan), and a specially appointed associate professor at Tokyo Institute of Technology (Japan). In addition, he held visiting fellowships at DAMTP, University of Cambridge (UK), and ESPCI Paris (France).
His research concerns mainly with computational fluid dynamics and fluid-structure interaction. His research topics encompass the biomechanics of animal flight, vortex dynamics, fluid-solid interaction, and high-performance computing. He develops mathematical models at multiple levels of complexity, ranging from reduced-order analytical description to direct numerical simulation, on the interface between engineering and biological sciences. He contributed to the development of computational fluid dynamics approaches such as volume penalization and wavelet-based adaptive methods.
Besides the work related with the biomechanics of insect flight, he has been involved in interdisciplinary international collaborative projects with marine biologists, aeronautical engineers, and environmental scientists.
His research at Skoltech focuses on the computational fluid dynamics in application to the development of new design and manufacturing processes at CDMM.

  1. X. Cai, D. Kolomenskiy, T. Nakata, H. Liu. A CFD data-driven aerodynamic model for fast and precise prediction of flapping aerodynamics in various flight velocities. Journal of Fluid Mechanics, 915:A114, 2021. https://doi.org/10.1017/jfm.2021.68
  2. G. Li, I. Ashraf, B. François, D. Kolomenskiy, F. Lechenault, R. Godoy-Diana, B. Thiria. Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle. Communications Biology, 4:40, 2021. https://doi.org/10.1038/s42003-020-01521-z
  3. H. Truong, T. Engels, D. Kolomenskiy, K. Schneider. Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee. Theoretical and Applied Mechanics Letters, 10:382-389, 2020. https://doi.org/10.1016/j.taml.2020.01.056
  4. D. Kolomenskiy, S. Farisenkov, T. Engels, N. Lapina, P. Petrov, F.-O. Lehmann, R. Onishi, H. Liu, A. Polilov. Aerodynamic performance of a bristled wing of a very small insect. Experiments in Fluids, 61:194, 2020. https://doi.org/10.1007/s00348-020-03027-0
  5. H. Truong, T. Engels, D. Kolomenskiy, K. Schneider. A mass-spring fluid-structure interaction solver: Application to flexible revolving wings. Computers & Fluids 200:104426, 2020. https://doi.org/10.1016/j.compfluid.2020.104426
  6. S. Ravi, R. Noda, S. Gagliardi, D. Kolomenskiy, S. Combes, H. Liu, A. Biewener, N. Konow. Modulation of flight muscle recruitment and wing rotation enables hummingbirds to mitigate aerial roll perturbations. Current Biology 30:187-195, 2020. https://doi.org/10.1016/j.cub.2019.11.025
  7. G. Li, D. Kolomenskiy, H. Liu, B. Thiria, R. Godoy-Diana. On the energetics and stability of a minimal fish school. PLoS One 14(8):e0215265, 2019. https://doi.org/10.1371/journal.pone.0215265
  8. D. Kolomenskiy, S. Ravi, R. Xu, K. Ueyama, T. Jakobi, T. Engels, T. Nakata, J. Sesterhenn, M. Farge, K. Schneider, R. Onishi, H. Liu. Wing morphology and inertial properties of bumblebees. Journal of Aero Aqua Bio-mechanisms 8(1):41-47, 2019. https://doi.org/10.5226/jabmech.8.41
  9. G. Li, D. Kolomenskiy, H. Liu, B. Thiria, R. Godoy-Diana. On the interference of vorticity and pressure fields of a minimal fish school. Journal of Aero Aqua Bio-mechanisms 8(1):27-33, 2019. https://doi.org/10.5226/jabmech.8.27
  10. D. Kolomenskiy, S. Ravi, R. Xu, K. Ueyama, T. Jakobi, T. Engels, T. Nakata, J. Sesterhenn, K. Schneider, R. Onishi, H. Liu. The dynamics of passive feathering rotation in hovering flight of bumblebees. Journal of Fluids and Structures 91:102628, 2019. https://doi.org/10.1016/j.jfluidstructs.2019.03.021
  11. T. Engels, D. Kolomenskiy, K. Schneider, M. Farge, F.-O. Lehmann, J. Sesterhenn. Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical experiments. Physical Review Fluids 4:013103, 2019. https://doi.org/10.1103/PhysRevFluids.4.013103
  12. D. Chen, D. Kolomenskiy, R. Onishi, H. Liu. Versatile reduced-order model of leading-edge vortices on rotary wings. Physical Review Fluids 3:114703, 2018. https://doi.org/10.1103/PhysRevFluids.3.114703
  13. T. Jakobi, D. Kolomenskiy, T. Ikeda, S. Watkins, A. Fisher, H. Liu, S. Ravi. Bees with attitude: the effects of directed gusts on flight trajectories. Biology Open 7:bio034074, 2018. https://doi.org/10.1242/bio.034074
  14. D. Kolomenskiy, R. Paoli. Numerical simulation of the wake of an airliner. Journal of Aircraft 55(4):1689-1699, 2018. https://doi.org/10.2514/1.C034349
  15. T. Engels, D. Kolomenskiy, K. Schneider, M. Farge, F.-O. Lehmann, J. Sesterhenn. Helical vortices generated by flapping wings of bumblebees. Fluid Dynamics Research 50(1):011419, 2018. https://doi.org/10.1088/1873-7005/aa908f
  16. D. Chen, D. Kolomenskiy, T. Nakata, H. Liu. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings. Bioinspiration and Biomimetics 13(1):016009, 2018. https://doi.org/10.1088/1748-3190/aa94d7
  17. D. Chen, D. Kolomenskiy, H. Liu. Closed-form solution for the edge vortex of a revolving plate. Journal of Fluid Mechanics 821:200-218, 2017. https://doi.org/10.1017/jfm.2017.257
  18. H. Liu, D. Kolomenskiy, T. Nakata, G. Li. Unsteady bio-fluid dynamics in flying and swimming. Acta Mechanica Sinica 33(4):663-684, 2017. https://doi.org/10.1007/s10409-017-0677-4
  19. S. Ravi, D. Kolomenskiy, T. Engels, K. Schneider, C. Wang, J. Sesterhenn, H. Liu. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds. Scientific Reports 6:35043, 2016. https://doi.org/10.1038/srep35043
  20. T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn. FluSI: a novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. SIAM Journal on Scientific Computing 38(5):S3-S24, 2016. https://doi.org/10.1137/15M1026006
  21. H. Liu, S. Ravi, D. Kolomenskiy, H. Tanaka. Biomechanics and biomimetics in insect-inspired flight systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704):20150390, 2016. https://doi.org/10.1098/rstb.2015.0390
  22. D. Kolomenskiy, M. Maeda, T. Engels, H. Liu, K. Schneider, J.-C. Nave. Aerodynamic ground effect in fruitfly sized insect takeoff. PLoS One 11(3):e0152072, 2016. https://doi.org/10.1371/journal.pone.0152072
  23. T. Engels, D. Kolomenskiy, K. Schneider, F.-O. Lehmann and J. Sesterhenn. Bumblebee flight in heavy turbulence. Physical Review Letters 116:028103, 2016. https://doi.org/10.1103/PhysRevLett.116.028103
  24. D. Kolomenskiy, J.-C. Nave, K. Schneider. Adaptive gradient-augmented level set method with multiresolution error estimation. Journal of Scientific Computing 66(1):116-140, 2016. https://doi.org/10.1007/s10915-015-0014-7
  25. T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn. Numerical simulation of fluid-structure interaction with the volume penalization method. Journal of Computational Physics 281:96-115, 2015. https://doi.org/10.1016/j.jcp.2014.10.005
  26. D. Kolomenskiy, R. Nguyen van yen, K. Schneider. Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions. Applied Numerical Mathematics 95:238-249, 2015. https://doi.org/10.1016/j.apnum.2014.02.003
  27. R. Nguyen van yen, D. Kolomenskiy, K. Schneider. Approximation of the Laplace and Stokes operators with Dirichlet boundary conditions through volume penalization: a spectral viewpoint. Numerische Mathematik 128(2):301-338, 2014. https://doi.org/10.1007/s00211-014-0610-8
  28. D. Kolomenskiy, Y. Elimelech, K. Schneider. Leading-edge vortex shedding from rotating wings. Fluid Dynamics Research 46:031421, 2014. https://doi.org/10.1088/0169-5983/46/3/031421
  29. G. Bimbard, D. Kolomenskiy, J. Casas, R. Godoy-Diana. Large kinematic variability during take-off in butterflies due to varying relative timing of legs and aerodynamic forces. Journal of Experimental Biology 216:3551-3563, 2013. https://doi.org/10.1242/jeb.084699
  30. T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn. Numerical simulation of the fluttering instability using a pseudospectral method with volume penalization. Computers and Structures 122:101-112, 2013. https://doi.org/10.1016/j.compstruc.2012.12.007
  31. D. Kolomenskiy, H. K. Moffatt. Similarity solutions for unsteady stagnation point flow. Journal of Fluid Mechanics 711:394-410, 2012. https://doi.org/10.1017/jfm.2012.397
  32. B. Kadoch, D. Kolomenskiy, P. Angot, K. Schneider. A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. Journal of Computational Physics 231:4365-4383, 2012. https://doi.org/10.1016/j.jcp.2012.01.036
  33. D. Kolomenskiy, H. K. Moffatt, M. Farge, K. Schneider. Two- and three-dimensional numerical simulations of the clap-fling-sweep of hovering insects. Journal of Fluids and Structures 27(5-6):784-791, 2011. https://doi.org/10.1016/j.jfluidstructs.2011.05.00
  34. D. Kolomenskiy, H. K. Moffatt, M. Farge, K. Schneider. The Lighthill – Weis-Fogh clap-fling-sweep mechanism revisited. Journal of Fluid Mechanics 676:572-606, 2011. https://doi.org/10.1017/jfm.2011.83
  35. D. Kolomenskiy, K. Schneider. Numerical simulations of falling leaves using a pseudo-spectral method with volume penalization. Theoretical and Computational Fluid Dynamics 24(1-4):169-173, 2010. https://doi.org/10.1007/s00162-009-0171-0
  36. D. Kolomenskiy, H. K. Moffatt, M. Farge, K. Schneider. Vorticity generation during the clap-fling-sweep of some hovering insects. Theoretical and Computational Fluid Dynamics 24(1-4):209-215, 2010. https://doi.org/10.1007/s00162-009-0137-2
  37. D. Kolomenskiy, K. Schneider. A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. Journal of Computational Physics 228:5687-5709, 2009. https://doi.org/10.1016/j.jcp.2009.04.026
  38. R. Nguyen van yen, M. Farge, D. Kolomenskiy, K. Schneider, N. Kingsbury. Wavelets meet Burgulence: CVS-filtered Burgers equation. Physica D 237:2151-2157, 2008. https://doi.org/10.1016/j.physd.2008.02.011