chengdongyuan



Personal Websites

Scopus Author ID: 55358275000 https://publons.com/researcher/2452100/echeng-dong-yuan/

Researcher ID: E-8707-2017 https://publons.com/researcher/2452100/echeng-dong-yuan/

Chengdong Yuan

Chengdong Yuan holds a PhD degree in Oil and Gas Field Development Engineering through a Combined Master’s-PhD program from Southwest Petroleum University, China (2016). He graduated with a Bachelor’s degree in Petroleum Engineering from Southwest Petroleum University (2011). He worked in Department of Petroleum Engineering of Kazan Federal University as an associate professor (2019-2022), and works in Department of Physical Chemistry of Kazan Federal University as a senior researcher (2017-2022). His academic interests focus on efficient hydrocarbon recovery. Specific interests include thermal methods for enhanced oil recovery including steam injection, in-situ combustion (ISC), new technologies for in-situ heavy oil upgrading, catalytic in-situ oil upgrading, catalytic oxidation of crude oil, chemical flooding especially for interfacial phenomena (wettability of solids, interfacial tension, foams and emulsions) and profile control and water shutoff technologies, etc. He has been authorized 7 patents and is author and co-author of more than 130 scientific papers (H-index of 23), has been awarded Scientific scholarship in the field of research in pharmaceutics, chemistry and petrochemistry, oil production and oil and gas geology of the KFU Board of Trustees (2020). He has participated and given presentations in international conferences about 15 times since 2015, including 8 times SPE conferences presenting technical presentations. He was Guest Editor of the international journal FUEL of the Special Issue “In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils”.

Development of the chemical and thermal EOR to increase the production efficiency

  1. Wang, T., Wang, L., Wang, J., Qin, H., & Yuan, C. (2022). In-situ emulsification synergistic self-profile control system on heavy oil reservoir development: Prescription construction and EOR mechanism investigation. Journal of Petroleum Science and Engineering219, 111069.
  2. Kirgizov, A. Y., Ding, B., Spiridonov, A. A., Liu, L., Laskin, A. I., Cao, C., … & Varfolomeev, M. A. (2022). Ex Situ Upgrading of Extra Heavy Oil: The Effect of Pore Shape of Co-Mo/γ-Al2O3 Catalysts. Catalysts12(10), 1271.
  3. Al-Mishaal, O. F., Suwaid, M. A., Al-Muntaser, A. A., Khelkhal, M. A., Varfolomeev, M. A., Djimasbe, R., … & Hakimi, M. H. (2022). Octahedral Cluster Complex of Molybdenum as Oil-Soluble Catalyst for Improving In Situ Upgrading of Heavy Crude Oil: Synthesis and Application. Catalysts12(10), 1125.
  4. Wang, L., Wang, T., Wang, J., Ma, T., Meng, X., & Yuan, C. (2022). A comprehensive investigation of SAGD steam chamber in dual horizontal well pairs: Expansion angel and connection characteristics. Journal of Petroleum Science and Engineering217, 110888.
  5. Ifticene, M. A., Yuan, C., Al-Muntaser, A. A., Onishchenko, Y. V., Emelianov, D. A., & Varfolomeev, M. A. (2022). Behavior and kinetics of the conversion/combustion of oil shale and its components under air condition. Fuel324, 124597.
  6. Yuan, C., Pu, W. F., Emelianov, D. A., Mehrabi-Kalajahi, S., & Varfolomeev, M. A. (2022). Catalytic Oxidation of Alkanes by Organometallics in an In Situ Combustion Process. Energy & Fuels36(17), 10167-10176.
  7. Félix, G., Tirado, A., Al-Muntaser, A., Kwofie, M., Varfolomeev, M. A., Yuan, C., & Ancheyta, J. (2022). SARA-based kinetic model for non-catalytic aquathermolysis of heavy crude oil. Journal of Petroleum Science and Engineering216, 110845.
  8. Tirado, A., Félix, G., Kwofie, M., Al-Muntaser, A., Varfolomeev, M. A., Yuan, C., & Ancheyta, J. (2022). Kinetics of heavy oil non-catalytic aquathermolysis with and without stoichiometric coefficients. Fuel323, 124365.
  9. Félix, G., Tirado, A., Yuan, C., Varfolomeev, M. A., & Ancheyta, J. (2022). Analysis of kinetic models for hydrocracking of heavy oils for In-situ and Ex-situ applications. Fuel323, 124322.
  10. Félix, G., Ríos, J. J., Tirado, A., Varfolomeev, M. A., Yuan, C., & Ancheyta, J. (2022). Monte Carlo and Sensitivity Analysis Methods for Kinetic Parameters Optimization: Application to Heavy Oil Slurry-Phase Hydrocracking. Energy & Fuels36(16), 9251-9260.
  11. Varfolomeev, M. A., Yuan, C., & Ancheyta, J. (2022). In-situ upgrading of heavy and extra-heavy crude oils. Fuel322, 124287.
  12. Rodionov, N. O., Neklyudov, V. V., Yuan, C., Mehrabi-Kalajahi, S., Varfolomeev, M. A., Talipov, S., … & Khasanova, N. M. (2022). New insights of the initial processes of pyrene oxidation in the presence of Cu-based catalysts: Quantum-mechanical calculation and experimental evidence. Applied Catalysis A: General643, 118775.
  13. Saifullin, E., Zhanbossynova, S., Zharkov, D., Yuan, C., Varfolomeev, M., & Zvada, M. (2022). Laboratory Studies for Design of a Foam Pilot for Reducing Gas Channeling from Gas Cap in Production Well in Messoyakhskoye Field. SPE Reservoir Evaluation & Engineering25(03), 472-485.
  14. Jin, F., Jiang, T., Yuan, C., Varfolomeev, M. A., Wan, F., Zheng, Y., & Li, X. (2022). An improved viscosity prediction model of extra heavy oil for high temperature and high pressure. Fuel319, 123852.
  15. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., & Xu, C. (2022). Influence of water on thermo-oxidative behavior and kinetic triplets of shale oil during combustion. Fuel318, 123690.
  16. Saifullin, E. R., Mehrabi-Kalajahi, S., Yuan, C., Varfolomeev, M. A., Rodionov, N. O., Talipov, S., & Sadikov, K. G. (2022). Catalytic combustion of heavy crude oil by oil-dispersed copper-based catalysts: Effect of different organic ligands. Fuel316, 123335.
  17. Djimasbe, R., Varfolomeev, M. A., Al-Muntaser, A. A., Yuan, C., Feoktistov, D. A., Suwaid, M. A., … & Prochukhan, K. Y. (2022). Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water. Fuel313, 122702.
  18. Kadkin, O. N., Mikhailova, A. N., Khafizov, N. R., Yuan, C., & Varfolomeev, M. A. (2022). A molecular mechanics and molecular dynamics study of the structural organization of Cu (II), Ni (II), Co (II), and Fe (II) stearates as potential catalysts for in situ upgrading of heavy oil. Fuel313, 123056.
  19. Simão, A., Domínguez-Álvarez, E., Yuan, C., Suwaid, M. A., Varfolomeev, M. A., Ancheyta, J., … & Dubrovin, K. A. (2022). On the use of metallic nanoparticulated catalysts for in-situ oil upgrading. Fuel313, 122677.
  20. Zhao, S., Gao, H., Pu, W., Varfolomeev, M. A., & Yuan, C. (2022). Isothermal oxidation behavior of heavy crude oil and its low-temperature oxidized oils: Implications for in-situ upgrading of heavy oil. Fuel313, 122704.
  21. Al-Muntaser, A. A., Varfolomeev, M. A., Suwaid, M. A., Saleh, M. M., Djimasbe, R., Yuan, C., … & Ancheyta, J. (2022). Effect of decalin as hydrogen-donor for in-situ upgrading of heavy crude oil in presence of nickel-based catalyst. Fuel313, 122652.
  22. Cao, Y., Yang, Y., Yu, W., Li, G., Rao, Z., Huang, Z., … & Zhou, Y. (2022). Regulating the Spin State of Single Noble Metal Atoms by Hydroxyl for Selective Dehydrogenation of CH4 Direct Conversion to CH3OH. ACS Applied Materials & Interfaces14(11), 13344-13351.
  23. Khafizov, N. R., Madzhidov, T. I., Yuan, C., Varfolomeev, M. A., & Kadkin, O. N. (2022). Theoretical insight into the catalytic effect of transition metal ions on the aquathermal degradation of heavy oil: A DFT study of cyclohexyl phenyl amine cleavage. Fuel312, 123002.
  24. Saeed, S. A., Taura, U., Al-Wahaibi, Y., Al-Muntaser, A. A., Yuan, C., Varfolomeev, M. A., … & Al Busaidi, R. S. (2022). Hydrothermal conversion of oil shale: Synthetic oil generation and micro-scale pore structure change. Fuel312, 122786.
  25. Khafizov, N. R., Madzhidov, T. I., Yuan, C., Varfolomeev, M. A., & Kadkin, O. N. (2022). Theoretical insight into the catalytic effect of transition metal ions on the aquathermal degradation of heavy oil: A DFT study of cyclohexyl phenyl amine cleavage. Fuel312, 123002.
  26. Tirado, A., Yuan, C., Varfolomeev, M. A., & Ancheyta, J. (2022). Kinetic modeling of aquathermolysis for upgrading of heavy oils. Fuel310, 122286.
  27. Saifullin, E. R., Putintseva, P. O., Sagirov, R. N., Varfolomeev, M. A., Yuan, C., Pavelyev, R. S., … & Mirzakimov, U. (2022). Novel Nonylphenol Polyethoxylated Based Surfactants for Enhanced Oil Recovery for High-Mineralization Carbonate Reservoir. Energies15(3), 961.
  28. Yuan, C., Rodionov, N., Mehrabi-Kalajahi, S., Emelianov, D. A., Zinnatullin, A. L., Varfolomeev, M. A., … & Vagizov, F. G. (2022). Catalytic combustion of heavy oil using γ-Fe2O3 nanocatalyst in in-situ combustion process. Journal of Petroleum Science and Engineering209, 109819.
  29. Zhao, S., Wang, H., Zhao, X., Yuan, C., Jiang, Q., Varfolomeev, M. A., & Sudakov, V. (2022). Combined Experimental and Numerical Investigation into Combustion Characteristics of Crude Oil under Different Permeability Ranges: Thermal EOR Implication. Energy & Fuels.
  30. Félix, G., Tirado, A., Varfolomeev, M. A., Yuan, C., & Ancheyta, J. (2022). Characteristic curves correlations to predict SARA composition and gas yields during heavy crude oil non-catalytic aquathermolysis. Chemical Engineering Communications, 1-8.
  31. Varfolomeev, M. A., Yuan, C., Bolotov, A. V., Saifullin, E. R., Minkhanov, I. F., Mehrabi-Kalajahi, S., … & Al Busaidi, R. S. (2022, October). Case Study on the Application of In-Situ Combustion for Ultra-Low Permeability Oil Shale from Natih B Formation (Oman): Synthetic Oil Generation and Micro-Scale Pore Structure Changes. In ADIPEC. OnePetro.
  32. Ifticene, M. A., Yuan, C., Sadikov, K. G., Emelianov, D. A., Al-Muntaser, A. A., & Varfolomeev, M. A. (2022). Experimental study on the in-situ combustion retorting of domanik oil shale. Petroleum Science and Technology, 1-18.
  33. Kwofie, M., Al-Muntaser, A. A., Varfolomeev, M. A., Suwaid, M. A., Yuan, C., Djimasbe, R., & Saeed, S. A. (2022). The effect of reaction time and temperature on the aquathermolysis process of heavy crude oil. Petroleum Science and Technology, 1-15.
  34. Jin, F., Du, X., Varfolomeev, M. A., Yuan, C., & Du, D. (2022). Preparation and migration study of multi-walled carbon nanotube hybrid polymer gel particles: EOR implication. Journal of Dispersion Science and Technology, 1-11.
  35. Yuan, C., Pu, W. F., Ifticene, M. A., Zhao, S., & Varfolomeev, M. A. (2022). Crude Oil Oxidation in an Air Injection Based Enhanced Oil Recovery Process: Chemical Reaction Mechanism and Catalysis. Energy & Fuels.
  36. Varfolomeev, M., Rezaei Koochi, M., Yuan, C., Khayrtdinov, R., Mustafin, A., Glukhov, M., … & Usmanov, S. (2022, March). Feasibility of Ion-Modified Water for Low Salinity Water Flooding: A Case Study for Ultra-High-Salinity Carbonate Reservoir in Akanskoe Oilfield Tatarstan, Russia. In SPE Conference at Oman Petroleum & Energy Show. OnePetro.
  37. Yuan, C., Pu, W., Varfolomeev, M. A., Hui, J., Zhao, S., Zheng, X., & Timofeeva, A. A. (2022, March). Foam for High Temperature and Ultra-High Salinity Conditions: Its Displacement Efficiency Under Different Permeability Heterogeneity. In SPE Conference at Oman Petroleum & Energy Show. OnePetro.
  38. Malahov, A. O., Saifullin, E. R., Varfolomeev, M. A., Nazarychev, S. A., Mustafin, A. Z., Yuan, C., … & Kadyrov, R. I. (2022). Screening of Surfactants for Flooding at High-Mineralization Conditions: Two Production Zones of Carbonate Reservoir. Energies15(2), 411.
  39. Zinnatullin, A. L., Yuan, C., Emelianov, D. A., Varfolomeev, M. A., & Vagizov, F. G. (2022). Fundamental insight into pyrolysis and oxidation process of ferric (III) stearate. Journal of Analytical and Applied Pyrolysis161, 105367.
  40. Mehrabi-Kalajahi, S., Varfolomeev, M. A., Yuan, C., Rodionov, N. O., Zinnatullin, A. L., Vagizov, F. G., & Osin, Y. N. (2021). Response to Comment on Oil-Dispersed α-Fe2O3 Nanoparticles as a Catalyst for Improving Heavy Oil Oxidation. Energy & Fuels35(24), 20413-20417.
  41. Li, K., Chen, B., Pu, W., Jing, X., Yuan, C., & Varfolomeev, M. (2021). Characteristics of Viscoelastic-Surfactant-Induced Wettability Alteration in Porous Media. Energies14(24), 8454.
  42. Saifullin, E. R., Zhanbossynova, S., Zharkov, D. A., Pavelyev, R. S., Yuan, C., Varfolomeev, M. A., … & Sitnov, S. A. (2021). Nonylphenol Ethoxylate Surfactants Modified by Carboxyl Groups for Foam EOR at High-Salinity Conditions. Energies14(24), 8205.
  43. Ariskina, K. A., Ding, Z., Abaas, M., Yuan, C., Emelianov, D. A., Chen, Q., & Varfolomeev, M. A. (2021). Influence of Carbonate Minerals on Heavy Oil Oxidation Behavior and Kinetics by TG-FTIR. Energies14(23), 8136.
  44. Varfolomeev, M. A., Yuan, C., Bolotov, A. V., Minkhanov, I. F., Mehrabi-Kalajahi, S., Saifullin, E. R., … & Shaihutdinov, D. K. (2021). Effect of copper stearate as catalysts on the performance of in-situ combustion process for heavy oil recovery and upgrading. Journal of Petroleum Science and Engineering207, 109125.
  45. Zhao, S., Xu, C., Pu, W., Varfolomeev, M. A., Zhou, Y., Yuan, C., & Wang, Q. (2021). Oxidation Characteristics and Kinetics of Shale Oil Using High-Pressure Differential Scanning Calorimetry. Energy & Fuels35(22), 18726-18732.
  46. Li, K., Chen, B., Pu, W., Wang, J., Liu, Y., Varfolomeev, M., & Yuan, C. (2021). Numerical Simulation via CFD Methods of Nitrogen Flooding in Carbonate Fractured-Vuggy Reservoirs. Energies14(22), 7554.
  47. Jin, F. Y., Jiang, T. T., Varfolomeev, M. A., Yuan, C., Zhao, H. Y., He, L., … & Xie, Q. (2021). Novel preformed gel particles with controllable density and its implications for EOR in fractured-vuggy carbonated reservoirs. Journal of Petroleum Science and Engineering205, 108903.
  48. Yuan, C., Pu, W., Varfolomeev, M. A., Wei, J., Zhao, S., & Cao, L. N. (2021). Deformable microgel for enhanced oil recovery in high-temperature and ultrahigh-salinity reservoirs: How to design the particle size of microgel to achieve its optimal match with pore throat of porous media. SPE Journal26(04), 2053-2067.
  49. Mehrabi-Kalajahi, S., Varfolomeev, M. A., Yuan, C., Rodionov, N. O., Zinnatullin, A. L., Vagizov, F. G., & Osin, Y. N. (2021). Oil-Dispersed α-Fe2O3 Nanoparticles as a catalyst for improving heavy oil oxidation. Energy & Fuels35(13), 10498-10511.
  50. Wu, F., Yu, S., Zhong, Y., Chen, W., Dan, M., Zou, Y., … & Zhou, Y. (2021). Homogeneous Photocatalytic Hydrogen Evolution System with Assembly of CdSe Quantum Dots and Graphene Oxide. Topics in Catalysis64(7), 567-575.
  51. Pu, W. F., Du, D. J., Fan, H. C., Chen, B. W., Yuan, C. D., & Varfolomeev, M. A. (2021). CO2-responsive preformed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects613, 126065.
  52. Mehrabi-Kalajahi, S., Varfolomeev, M. A., Yuan, C., Zinnatullin, A. L., Rodionov, N. O., Vagizov, F. G., … & Yakimova, L. S. (2021). Improving heavy oil oxidation performance by oil-dispersed CoFe2O4 nanoparticles in In-situ combustion process for enhanced oil recovery. Fuel285, 119216.
  53. Yuan, C., Emelianov, D. A., Varfolomeev, M. A., Rodionov, N. O., Suwaid, M. A., & Vakhitov, I. R. (2021). Mechanistic and kinetic insight into catalytic oxidation process of heavy oil in in-situ combustion process using copper (Ⅱ) stearate as oil soluble catalyst. Fuel284, 118981.
  54. Djimasbe, R., Varfolomeev, M. A., Al-Muntaser, A. A., Yuan, C., Suwaid, M. A., Feoktistov, D. A., … & Davletshin, R. R. (2020). Deep insights into heavy oil upgrading using supercritical water by a comprehensive analysis of GC, GC–MS, NMR, and SEM–EDX with the Aid of EPR as a Complementary Technical Analysis. ACS omega6(1), 135-147.
  55. Jin, F., Li, Q., Liu, Y., Pu, W., Yuan, C., Yuan, X., … & Li, K. (2021, December). Successful Field Application of Delayed Water-Swelling, Flexible Gel Particles for In-Depth Waterflood Conformance Improvement in Wide Spacing of Wells with High Temperature and High Salinity. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro.
  56. Yuan, C., Pu, W., Varfolomeev, M. A., Mustafin, A. Z., Tan, T., Zhao, S., & Liu, R. (2021, October). Sweep improvement options for highly heterogeneous reservoirs with high temperature and ultra-high salinity: A case study in Tarim basin, China. In SPE Annual Caspian Technical Conference. OnePetro.
  57. Rojas, A. A., Yuan, C., Emelianov, D. A., Saifullin, E. R., Mehrabi-Kalajahi, S., Varfolomeev, M. A., … & Zaripov, A. T. (2021, October). A 3-Step Reaction Model For Numerical Simulation of In-Situ Combustion. In SPE Russian Petroleum Technology Conference. OnePetro.
  58. Saifullin, E., Zhanbossynova, S., Zharkov, D., Yuan, C., Varfolomeev, M., & Zvada, M. (2022). Laboratory Studies for Design of a Foam Pilot for Reducing Gas Channeling from Gas Cap in Production Well in Messoyakhskoye Field. SPE Reservoir Evaluation & Engineering25(03), 472-485.
  59. Al-Muntaser, A. A., Varfolomeev, M. A., Suwaid, M. A., Feoktistov, D. A., Yuan, C., Klimovitskii, A. E., … & Fedorchenko, G. D. (2021). Hydrogen donating capacity of water in catalytic and non-catalytic aquathermolysis of extra-heavy oil: Deuterium tracing study. Fuel283, 118957.
  60. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., Mehrabi-Kalajahi, S. S., Saifullin, E. R., … & Talipov, S. (2020). Low-temperature combustion characteristics of heavy oils by a self-designed porous medium thermo-effect cell. Journal of Petroleum Science and Engineering195, 107863.
  61. Suwaid, M. A., Varfolomeev, M. A., Al-Muntaser, A. A., Yuan, C., Starshinova, V. L., Zinnatullin, A., … & Chemodanov, A. E. (2020). In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts. Fuel281, 118753.
  62. Tverdov, I., Khafizov, N. R., Madzhidov, T. I., Varfolomeev, M. A., Yuan, C., & Kadkin, O. N. (2020). Theoretical Insights into the Catalytic Effect of Transition-Metal Ions on the Aquathermal Degradation of Sulfur-Containing Heavy Oil: A DFT Study of Cyclohexyl Phenyl Sulfide Cleavage. ACS omega5(31), 19589-19597.
  63. Ariskina, K. A., Yuan, C., Abaas, M., Emelianov, D. A., Rodionov, N., & Varfolomeev, M. A. (2020). Catalytic effect of clay rocks as natural catalysts on the combustion of heavy oil. Applied Clay Science193, 105662.
  64. Yuan, C., Varfolomeev, M. A., & Khachatrian, A. A. (2020). Interaction between aromatics and n-alkane for in-situ combustion process. Journal of Petroleum Science and Engineering187, 106770.
  65. Varfolomeev, M. A., Ziniukov, R. A., Yuan, C., Khairtdinov, R. K., Sitnov, S. A., Sudakov, V. A., … & Glukhov, M. S. (2020, October). Optimization of carbonate heavy oil reservoir development using surfactant flooding: From laboratory screening to pilot test. In SPE Russian Petroleum Technology Conference. OnePetro.
  66. Yuan, C., Pu, W., Varfolomeev, M. A., Tan, T., Timofeeva, A. A., Sitnov, S. A., & Mustafin, A. Z. (2020, November). Salt-tolerant surfactant for dilute surfactant flooding in high-salinity reservoirs: Residual oil stripping and displacement mechanism and efficiency by ultra-low interfacial tension. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro.
  67. Mustafin, A. Z., Li, K., Varfolomeev, M. A., Yuan, C., Kadyrov, R. I., Glukhov, M. S., … & Statsenko, E. O. (2020, October). A Case Study of Salt-Tolerant Functional Polymer For EOR in Carbonate Reservoirs with Ultra-High Salinity. In SPE Russian Petroleum Technology Conference. OnePetro.
  68. Al-Muntaser, A. A., Varfolomeev, M. A., Suwaid, M. A., Yuan, C., Chemodanov, A. E., Feoktistov, D. A., … & Amerkhanov, M. I. (2020). Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions. Journal of Petroleum Science and Engineering184, 106592.
  69. Ariskina, K. A., Abaas, M., Yuan, C., Emelianov, D. A., & Varfolomeev, M. A. (2020). Effect of calcite and dolomite on crude oil combustion characterized by TG-FTIR. Journal of Petroleum Science and Engineering184, 106550.
  70. Yuan, C., Sadikov, K., Varfolomeev, M., Khaliullin, R., Pu, W., Al-Muntaser, A., & Mehrabi-Kalajahi, S. S. (2020). Low-temperature combustion behavior of crude oils in porous media under air flow condition for in-situ combustion (ISC) process. Fuel259, 116293.
  71. Pu, W., Zhao, S., Hu, L., Varfolomeev, M. A., Yuan, C., Wang, L., & Rodionov, N. O. (2020). Thermal effect caused by low temperature oxidation of heavy crude oil and its in-situ combustion behavior. Journal of Petroleum Science and Engineering184, 106521.
  72. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., Qin, S., Wang, L., … & Khachatrian, A. A. (2019). Thermal behavior and kinetics of heavy crude oil during combustion by high pressure differential scanning calorimetry and accelerating rate calorimetry. Journal of Petroleum Science and Engineering181, 106225.
  73. Yuan, C., Emelianov, D. A., Varfolomeev, M. A., & Abaas, M. (2019). Combustion behavior of aromatics and their interaction with n-alkane in in-situ combustion enhanced oil recovery process: Thermochemistry. Journal of Industrial and Engineering Chemistry76, 467-475.
  74. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., & Rodionov, A. A. (2019). Integrative investigation of low-temperature oxidation characteristics and mechanisms of heavy crude oil. Industrial & Engineering Chemistry Research58(31), 14595-14602.
  75. Yuan, C., Emelianov, D. A., Varfolomeev, M. A., & Abaas, M. (2019). Comparison of oxidation behavior of linear and branched alkanes. Fuel Processing Technology188, 203-211.
  76. Abaas, M., Yuan, C., Emelianov, D. A., Varfolomeev, M. A., & Ariskina, K. A. (2019). Effect of calcite on crude oil combustion characterized by high-pressure differential scanning calorimetry (HP-DSC). Petroleum Science and Technology37(10), 1216-1221.
  77. Zhao, S., Pu, W., Yuan, C., Peng, X., Zhang, J., Wang, L., & Emelianov, D. A. (2019). Thermal behavior and kinetic triplets of heavy crude oil and its SARA fractions during combustion by high-pressure differential scanning calorimetry. Energy & Fuels33(4), 3176-3186.
  78. Yuan, C., Pu, W., Varfolomeev, M. A., Tan, T., & Zhao, S. (2019, October). Trapped oil in low-permeability zone unswept by water flooding under permeability heterogeneity can be mobilized by ultra-low interfacial tension: EOR mechanism of dilute surfactant flooding proved by low field NMR core flooding and two-parallel core flooding experiments. In SPE Gas & Oil Technology Showcase and Conference. OnePetro.
  79. Yuan, C., Pu, W., Varfolomeev, M. A., Wei, J., Zhao, S., & Cao, L. N. (2019, November). Deformable Micro-Gel for EOR in High-Temperature and Ultra-High-Salinity Reservoirs: How to Design the Particle Size of Micro-Gel to Achieve its Optimal Match with Pore Throat of Porous Media. In Abu Dhabi International Petroleum Exhibition & Conference. OnePetro.
  80. Yuan, C., Mehrabi-Kalajahi, S. S., Sadikov, K., Varfolomeev, M. A., Emelianov, D. A., Rodionov, N. O., & Amerkhanov, M. I. (2019, October). Potential of copper-based oil soluble catalyst for improving efficiency of in-situ combustion process: catalytic combustion, catalytic in-situ oil upgrading, and increased oil recovery. In SPE Kuwait Oil & Gas Show and Conference. OnePetro.
  81. Mehrabi-Kalajahi, S., Varfolomeev, M. A., & Yuan, C. (2019). CATALYTIC IN-SITU COMBUSTION PROCESS IN THE PRESENCE OF METAL OXIDE PARTICLES. International Multidisciplinary Scientific GeoConference: SGEM19(1.2), 677-682.
  82. Ariskina, K. A., Al-Muntaser, A. A., Abaas, M., Varfolomeev, M. A., & Yuan, C. (2019). Effect of clay of alekseevsky field on crude oil combustion by tg-ftir. International Multidisciplinary Scientific GeoConference: SGEM19(1.2), 829-835.
  83. Golafshani, M. B., Varfolomeev, M. A., Yuan, C., & Kalajahi, S. M. (2019). OXIDATION OF HEAVY CRUDE OIL USING OIL-SOLUBLE TITANIUM OXIDE IN IN-SITU COMBUSTION PROCESS. International Multidisciplinary Scientific GeoConference: SGEM19(1.2), 1039-1044.
  84. Talipov, S., Kalajahi, S., Yuan, C., & Varfolomeev, M. (2018). Catalytic oxidation of heavy crude oil using copper based catalyst for in-situ combustion enhanced oil recovery. Education2020.
  85. Abaas, M., Al-Muntaser, A. A., Ariskina, K. A., Varfolomeev, M. A., & Yuan, C. (2019). EFFECT OF TRIPOLI OF PERVOMAYSKY FIELD ON THE HEAVY CRUDE OIL COMBUSTION BY HP-DSC. International Multidisciplinary Scientific GeoConference: SGEM19(1.2), 815-820.
  86. Huang, T., Cao, L., Yuan, C., & Chen, P. (2019). A novel numerical model of gas transport in multiscale shale gas reservoirs with considering surface diffusion and Langmuir slip conditions. Energy Science & Engineering7(4), 1315-1332.
  87. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., Zhang, J., Han, X., … & Wu, J. (2018). Comprehensive investigations into low temperature oxidation of heavy crude oil. Journal of Petroleum Science and Engineering171, 835-842.
  88. Mehrabi-Kalajahi, S. S., Varfolomeev, M. A., Yuan, C., Emelianov, D. A., Khayarov, K. R., Klimovitskii, A. I., … & Lubnina, E. V. (2018). EPR as a complementary tool for the analysis of low-temperature oxidation reactions of crude oils. Journal of Petroleum Science and Engineering169, 673-682.
  89. Zhao, S., Pu, W., Varfolomeev, M. A., Yuan, C., Pan, J., Wang, R., … & Kan, N. (2018). Low-temperature oxidation of light and heavy oils via thermal analysis: Kinetic analysis and temperature zone division. Journal of Petroleum Science and Engineering168, 246-255.
  90. Starshinova, V., Al-Muntaser, A., Yuan, C., Khachatrian, A., Emelianov, D., Suwaid, M., … & Varfolomeev, M. Copper stearate as a catalyst for improving the oxidation performance of heavy oil in in-situ combustion process.
  91. Yuan, C., Emelianov, D. A., Varfolomeev, M. A., Pu, W., & Ushakova, A. S. (2018). Oxidation behavior and kinetics of eight C20–C54 n-alkanes by high pressure differential scanning calorimetry (HP-DSC). Energy & Fuels32(7), 7933-7942.
  92. Yuan, C., Emelianov, D. A., & Varfolomeev, M. A. (2018). Oxidation behavior and kinetics of light, medium, and heavy crude oils characterized by thermogravimetry coupled with fourier transform infrared spectroscopy. Energy & fuels32(4), 5571-5580.
  93. Pu, W., Zhao, S., Wang, S., Wei, B., Yuan, C., & Li, Y. (2018). Investigation into the migration of polymer microspheres (PMs) in porous media: Implications for profile control and oil displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects540, 265-275.
  94. Zhao, T. H., Xing, J. Y., Pu, W. F., Dong, Z. M., Yuan, C. D., Peng, G. F., … & Xia, J. J. (2018). Synthesis and property evaluation of a novel polyacrylamide‐montmorillonite composite for water shutoff and profile control in high salinity reservoirs. Polymer Composites39(2), 368-376.
  95. Yuan, C., Varfolomeev, M. A., Emelianov, D. A., Eskin, A. A., Nagrimanov, R. N., Kok, M. V., … & Kopylova, E. V. (2018). Oxidation behavior of light crude oil and its SARA fractions characterized by TG and DSC techniques: differences and connections. Energy & fuels32(1), 801-808.
  96. Mehrabi-Kalajahi, S., Varfolomeev, M., Yuan, C., Pu, W., Rodionov, A., Orlinskii, S., … & Gafurov, M. (2018, October). Using EPR technique for monitoring of ISC processes and reservoirs temperature in enhanced oil recovery. In SPE Russian Petroleum Technology Conference. OnePetro.
  97. Sadikov, K., Yuan, C., Mehrabi-Kalajahi, S. S., Varfolomeev, M. A., & Talipov, S. A. (2018, December). A new, fast, and efficient method for evaluating the influence of catalysts on in-situ combustion process for heavy oil recovery. In SPE International Heavy Oil Conference and Exhibition. OnePetro.
  98. Jin, F., Li, D., Pu, W., Li, Y., Li, B., Yuan, C., … & Wang, N. (2017). Utilisation of multiple gas injection to enhance oil recovery for fractured-cavity carbonate heavy oil reservoir. International Journal of Oil, Gas and Coal Technology15(1), 77-93.
  99. Pu, W. F., Yang, Y., & Yuan, C. D. (2016). Gelation performance of poly (ethylene imine) crosslinking polymer–layered silicate nanocomposite gel system for potential water‐shutoff use in high‐temperature reservoirs. Journal of Applied Polymer Science133(47).
  100. Jin, F., Liu, Z., Pu, W., Zhong, D., Yuan, C., & Wei, B. (2016). Experimental study of in‐situ CO2 foam technique and application in Yangsanmu oilfield. Journal of Surfactants and Detergents19(6), 1231-1240.
  101. Jin, F. Y., Wang, S., Pu, W. F., Liu, X. L., Yuan, C. D., Zhao, S., … & Dou, L. (2016). The effects of interfacial tension, injection rate, and permeability on oil recovery in dilute surfactant flooding. Petroleum Science and Technology34(16), 1490-1495.
  102. Pu, W. F., Yang, Y., Wei, B., & Yuan, C. D. (2016). Potential of a β-cyclodextrin/adamantane modified copolymer in enhancing oil recovery through host–guest interactions. Industrial & Engineering Chemistry Research55(31), 8679-8689.
  103. Jin, F. Y., Wang, S., Pu, W. F., Yuan, C. D., Wang, L., Li, K. X., & Gong, C. (2016). Emulsified oil foam for improving the flowability of heavy oil in wellbore under high salinity environments. Journal of Industrial and Engineering Chemistry39, 153-161.
  104. Pu, W. F., Zhao, S., Lu, X. B., Yuan, C. D., Wang, S., Tang, Y. L., … & Li, R. (2016). The effect of oil properties on oil recovery in dilute surfactant flooding. Petroleum Science and Technology34(8), 759-764.
  105. Pu, W. F., Yuan, C. D., Wang, X. C., Sun, L., Zhao, R. K., Song, W. J., & Li, X. F. (2016). The wettability alteration and the effect of initial rock wettability on oil recovery in surfactant-based enhanced oil recovery processes. Journal of Dispersion Science and Technology37(4), 602-611.
  106. Pu, W., Yuan, C., Hu, W., Tan, T., Hui, J., Zhao, S., … & Tang, Y. (2016). Effects of interfacial tension and emulsification on displacement efficiency in dilute surfactant flooding. RSC advances6(56), 50640-50649.
  107. Yuan, C. D., Pu, W. F., Jin, F. Y., Zhang, J. J., Zhao, Q. N., Li, D., … & Chen, Y. F. (2015). Characterizing the fuel deposition process of crude oil oxidation in air injection. Energy & Fuels29(11), 7622-7629.
  108. Yuan, C. D., Pu, W. F., Wang, X. C., Sun, L., Zhang, Y. C., & Cheng, S. (2015). Effects of interfacial tension, emulsification, and surfactant concentration on oil recovery in surfactant flooding process for high temperature and high salinity reservoirs. Energy & Fuels29(10), 6165-6176.
  109. Pu, W. F., Chen, Y. F., Jin, F. Y., Li, Y. B., Sun, L., Yuan, C. D., … & Li, D. (2015). The kinetic analysis of coke formation under differential air-oil ratio during high pressure air injection. Petroleum Science and Technology33(5), 503-509.
  110. Sun, L., Pu, W., Xin, J., Wei, P., Wang, B., Li, Y., & Yuan, C. (2015). High temperature and oil tolerance of surfactant foam/polymer–surfactant foam. Rsc Advances5(30), 23410-23418.
  111. Pu, W. F., Yuan, C. D., Jin, F. Y., Wang, L., Qian, Z., Li, Y. B., … & Chen, Y. F. (2015). Low-temperature oxidation and characterization of heavy oil via thermal analysis. Energy & Fuels29(2), 1151-1159.
  112. Li, Y. B., Chen, Y. F., Pu, W. F., Jin, F. Y., Yuan, C. D., Li, D., … & Zhou, W. (2015). The kinetic analysis of oxidized oil during the high pressure air injection by thermal kinetic analysis. Petroleum Science and Technology33(3), 319-326.
  113. Jin, F. Y., Yuan, C. D., Pu, W. F., Zhang, Y. Y., Tang, S., Dong, Y. F., … & Li, Y. B. (2015). Investigation on gelation process and microstructure for partially hydrolyzed polyacrylic amide (HPAm)–Cr (III) acetate–methanal compound crosslinked weak gel. Journal of Sol-Gel Science and Technology73(1), 181-191.
  114. Yuan, C. D., Pu, W. F., Guo, Z., Yao, K. L., & Liu, Z. (2014). Oxidation behavior and kinetics of light oil and heavy oil. Huaxue Gongcheng/Chemical Engineering (China)42, 56-59.
  115. Yuan, C. D., Pu, W. F., Jin, F. Y., Zhang, Y. C., Jia, H., & Zhao, T. H. (2014). Performance of oil-based cement slurry as a selective water-plugging agent in high-temperature and high-salinity cave-fractured carbonate reservoirs. Industrial & Engineering Chemistry Research53(14), 6137-6149.
  116. Yang, J. J., Pu, W. F., Jia, H., Yuan, C. D., Ni, J. H., Li, X. L., … & Jiang, H. (2014). A comprehensive analysis of the properties of light crude oil in oxidation experimental studies. Journal of Thermal Analysis and Calorimetry117(2), 979-984.
  117. Jin, F. , Tian, Y. , Pu, W. , Yuan, C. , & Liu, Z. . (2013). An experimental study on gas-channeling blocking by salt precipitation. Natural Gas Industry, 33(9), 74-78.
  118. Liu, R. , Pu, W. F. ,  Peng, Q. ,  Jin, F. Y. , &  Yuan, C. D. . (2013). Effects of porous media wettability on microscopic and macroscopic displacement efficiency of polymer flooding. Oilfield Chemistry, 30(2), 207-211.
  119. Jia, H., Zhao, J. Z., Pu, W. F., Li, Y. M., Yuan, Z. T., & Yuan, C. D. (2012). Laboratory investigation on the feasibility of light-oil autoignition for application of the high-pressure air injection (HPAI) process. Energy & fuels26(9), 5638-5645.
  120. Jia, H., Yuan, C. D., Zhang, Y. C., Peng, H., Zhong, D., & Zhao, J. Z. (2012, June). Recent progress of high-pressure air injection (HPAI) process in Light Oil Reservoir: laboratory investigation and field application. In SPE Heavy Oil Conference Canada. OnePetro.

PhD, Oil-Gas Field Development Engineering, Southwest Petroleum University, Chengdu, Sichuan, China, 09/2011–12/2016

Recovery of conventional and unconventional hydrocarbon resources including chemical flooding (polymer, surfactant, nanofluid, etc.), conformance control (profile control and water shutoff), smart water, thermal enhanced oil recovery methods (in-situ combustion, steam injection, etc.), catalysts, catalytic combustion of hydrocarbons, catalytic oil upgrading of oil, multiphase flow mechanism in porous media, interaction in oil/water/rock system, hydrogen production, etc.

Scientific scholarship in the field of research in pharmaceutics, chemistry and petrochemistry, oil production and oil and gas geology of the KFU Board of Trustees (2020)