Personal Websites

Aslan Kasimov

Aslan Kasimov holds a Ph.D. degree in Theoretical  and Applied Mechanics from the University of Illinois at Urbana-Champaign, received in 2004. He obtained his undergraduate education at Moscow Engineering-Physics Institute (MEPhI) graduating in 1993 with a degree in chemical physics. Prior to joining Skoltech, Prof. Kasimov was a lecturer and instructor in applied mathematics at the Department of Mathematics of MIT (2005-2009), served as a founding faculty at the King Abdullah University of Science and Technology (KAUST, 2009-2016), and held a position in the Tamm Theoretical Physics Department at the Lebedev Physical Institute of the Russian Academy of Sciences.

He was a recipient of a US AFOSR Young Investigator Award in 2007 for his work on detonation theory and of a number of graduate awards at the University of Illinois. He has substantial teaching and advising experience at both graduate and undergraduate levels at MIT and KAUST. At KAUST, he helped establish a vigorous graduate program in Applied Mathematics and Computational Science, where he created and taught original courses on applied partial differential equations, stability and bifurcation theory, asymptotic analysis, and theoretical fluid dynamics. Many graduates of the program continued as doctoral students or postdocs at various universities around the world including Stanford University, UC Berkeley, Oxford University, MIT.

More in CV.

Prof. Kasimov’s research is focused on the theory and numerical simulation of reacting flows and other nonlinear phenomena that exhibit complex, often chaotic, dynamics. Much of his past research has been on the theory of detonations, with particular emphasis on the analysis of stability of detonation waves and on the construction  of asymptotic models of multi-dimensional detonations. He has also made contributions to various other areas of nonlinear science, such as: traffic modeling, co-authoring a theory of jamitons; theory of water waves, especially involving hydraulic jumps; pattern-forming instabilities in reaction-diffusion equations in biology; dispersive waves, such as those arising in the complex Gross-Pitaevskii equation; analysis of partial differential equations.At the Skoltech Center for Design, Manufacturing and Materials, Prof. Kasimov’s research is on the analysis and computation of complex fluid flows and of phase-transition phenomena occurring in various manufacturing processes. 

Research highlight: 3D model on the right shows the chaotic attractor of a reactive Burgers equation introduced originally and analyzed in:


  • D. I. Kabanov, A. R. Kasimov, A minimal hyperbolic system for unstable shock waves, Communications in Nonlinear Science and Numerical Simulation, 70, 282-301, 2019 (; preprint:
  • D. I. Kabanov, A. R. Kasimov, Linear stability analysis of detonations via numerical computation and dynamic mode decomposition, Physics of Fluids, 30, 036103, 2018 (; preprint:
  • A. Sow, R. Semenko, and A.R. Kasimov, On a stabilization mechanism for low-velocity detonations, Journal of Fluid Mechanics, 816, 539–553, 2017 (
  • R. Semenko, L. Faria, A. Kasimov, B. Ermolaev, Set-valued solutions for non-ideal detonation, Shock Waves, 26(2), 141–160, 2016 (; preprint:
  • L. Faria, A. Kasimov, R. R. Rosales, Study of a model equation in detonation theory: multidimensional effects, SIAM Journal on Applied Mathematics, 76(3), 887–909, 2016 (
  • A. R. Kasimov, R. E. Semenko, On modeling gaseous detonation in porous media by the one-dimensional reactive Euler equations, Gorenie i Vzryv (Moskva) – Combustion and Explosion, 9(4), 19–26, 2016.
  • L. Faria, A. Kasimov, R. R. Rosales, Theory of weakly nonlinear self-sustained detonations, Journal of Fluid Mechanics, 784, 163–198, 2015 (
  • L. Faria, A. Kasimov, Qualitative modeling of the dynamics of detonations with losses, Proceedings of the Combustion Institute, 35(2), 2015–2023, 2015 ( preprint:
  • J. Sierra, A. Kasimov, P. Markowich, R.-M. Weish ̈aupl, On the Gross-Pitaevskii equation with pumping and decay: stationary states and their stability, Journal of Nonlinear Science, 25(3), 709–739, 2015 ( preprint:
  • A. Kasimov, Detonation analogs revisited, Proceedings of 25th ICDERS, Leeds, UK, 2015. (
  • L. Faria, A. Kasimov, R. R. Rosales, A toy model for multi-dimensional cellular detonations, Proceedings of 25th ICDERS, Leeds, UK, 2015(
  • L. Faria, A. Kasimov, R. R. Rosales, Weakly nonlinear dissipative detonations, Proceedings of 25thICDERS, Leeds, UK, 2015 (
  • A. Kasimov and S. Korneev, Detonation in supersonic radial outflow, Journal of Fluid Mechanics, 760, 313-341, 2014 ( on the journal cover).
  • L. Faria, A. Kasimov, R. R. Rosales, Study of a model equation in detonation theory, SIAM Journal on Applied Mathematics, 74(2), 547-570, 2014 (
  • L. M. Faria, A. R. Kasimov, R. R. Rosales, From Zeldovich–von Neumann–Doering model to theories of pulsating and cellular detonations, Proceedings of the 3rd International Conference on Combustion and Detonation “Zel’dovich Memorial”, Moscow, Russia, 2014
  • A. R. Kasimov, S. Korneev, Detonation in supersonic radial outflow, Proceedings of the 21stInternational Conference on Nonlinear Problems of Hydrodynamic Stability and Turbulence, Moscow State University, Russia, 2014
  • R. Parshad, M. Beauregard, A. Kasimov, B. Said-Houari, Global existence and finite-time blowup in a class of stochastic nonlinear wave equations, Communications in Stochastic Analysis, 8(3), 381-411, 2014
  • R. Parshad, N. Kumari, A. Kasimov, H. Ait Abderrhamane, Turing patterns and long-time behavior in a three-species food-chain model, Mathematical Biosciences, 254, 83-102, 2014
  • A. Kasimov, R. Racke, B. Said-Houari, Global existence and decay of solutions of the Cauchy problem in thermoelasticity with second sound, Applicable Analysis, 93(5), 2014
  • B. Said-Houari, A. Kasimov, Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same, Journal of Differential Equations, 255(4), 611-632, 2013
  • A. Kasimov, L. Faria, R. R. Rosales, Model for shock wave chaos, Physical Review Letters, 110, 104104, 2013 ( (preprint:
  • B. Seibold, M. Flynn, A. Kasimov, R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Networks and Heterogeneous Media, 8(3), 745-772, 2013
  • B. Said-Houari, A. Kasimov, Decay property of Timoshenko system in thermoelasticity, Mathematical Methods in Applied Sciences, 35, 314-333, 2012
  • M. R. Flynn, A. R. Kasimov, J.-C. Nave, R.R. Rosales, B. Seibold, Self-sustained nonlinear waves in traffic flow, Physical Review E 79, 056113, 2009
  • B. Taylor, A. R. Kasimov, D.S. Stewart, Mode selection in weakly unstable two-dimensional detonations, Combustion Theory and Modelling, 13:6, 973-992, 2009
  • M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales, B. Seibold, On jamitons, self-sustained nonlinear traffic waves, arXiv:0809.2828v2, 2008
  • A. R. Kasimov, A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue, Journal of Fluid Mechanics, 601, 189-198, 2008
  • D. S. Stewart and A. R. Kasimov, State of detonation stability theory and its application to propulsion, Journal of Propulsion and Power, 22, No. 6, 1230-1244, 2006
  • D. S. Stewart and A. R. Kasimov, Theory of detonation with an embedded sonic locus, SIAM Journal on Applied Mathematics, 66, No. 2, 384-407, 2005
  • A. R. Kasimov and D. S. Stewart, Asymptotic theory of evolution and failure of self-sustained detonations, Journal of Fluid Mechanics, 525, 161-192, 2005
  • A. R. Kasimov and D. S. Stewart, On the dynamics of self-sustained detonations: A numerical study in the shock-attached frame, Physics of Fluids, 16(10), 3566-3578, 2004
  • A. R. Kasimov and D. S. Stewart, Theory of detonation initiation and comparison with experiment, TAM Report 1035, Theoretical & Applied Mechanics, UIUC, 2004
  • A. R. Kasimov and D. S. Stewart, Spinning instability of gaseous detonations, Journal of Fluid Mechanics, 466, 179-203, 2002
  • A.A. Borisov, O.I. Mel’nichuk, A.R. Kasimov, B.A. Khasainov, K.Ya. Troshin, and V. Kosenkov, On the energy evolution in gaseous detonation waves, Journal de Physique IV, C4, Vol. 5, 1995
  • Young Investigator Program Award, US Air Force Oce of Scientific Research, 2007-2009

Mathematical Modeling in Manufacturing and Applied Sciences

This is a 6-credit course on applied mathematics primarily aimed at first year Masters students. It introduces essential mathematical modeling techniques emphasizing analytical methods and their use in solving various problems of applied science and manufacturing. The topics include: asymptotic and perturbation methods for ordinary and partial differential equations, singular perturbations, homogenization, analysis of models of heat transfer, fluid and solid mechanics, electromagnetism, chemical kinetics, chemical reactors, convection in porous media, one-dimensional two-phase flow, linear and nonlinear stability, alloy solidification, interfacial instabilities and pattern formation.

Профессор Аслан Рамазанович Касимов получил ученую степень PhD в теоретической и прикладной механике в Университете штата Иллинойс в Урбана-Шампейн, США, в 2004 году. Он является выпускником кафедры физики быстропротекающих процессов Московского инженерно-физического института (МИФИ) 1993 года. До прихода в «Сколтех» профессор Касимов работал преподавателем  прикладной математики на факультете математики Массачусетского технологического института (2005-2009), был профессором-основателем университета науки и технологии им. Короля Абдуллы (KAUST, 2009-2016),  также работал сотрудником в отделении теоретической физики им. И.Е. Тамма в Физическом институте им. П.Н. Лебедева РАН.

Он был лауреатом премии и гранта US AFOSR Young Investigator Award в 2007 году за работу по теории детонации. Имеет значительный опыт преподавания и руководства аспирантами в Массачусетском технологическом институте и KAUST. В KAUST он был одним из основателей программы магистратуры и аспирантуры по прикладной математике и вычислительной науке, где он создал и преподавал оригинальные курсы по прикладным уравнениям в частных производных, теории устойчивости и бифуркаций, асимптотическому анализу и теоретической гидродинамике.