arogozin

Aleksandr Rogozin

In 2018 received B.Sc degree in Moscow Institute of Physics and Technology (MIPT). In 2020, received M.Sc degree and in 2023 a PhD in the same university. Since 2020 Alexander is working in MIPT as a Research Scientist. Research interests include convex optimization, distributed optimization.

Research interests: convex optimization, distributed optimization, time-varying communication networks.

Joint projects with industry: digital power pre-distortion (2020-2022, Huawei), internet networks planning and management (2022-2023, Huawei).

  1. Yarmoshik, D., Rogozin, A., & Gasnikov, A. (2024). Decentralized optimization with affine constraints over time-varying networks. Computational Management Science, 21(1), 10.
  2. Metelev, D., Beznosikov, A., Rogozin, A., Gasnikov, A., & Proskurnikov, A. (2024). Decentralized optimization over slowly time-varying graphs: Algorithms and lower bounds. Computational Management Science, 21(1), 8.
  3. Metelev, D., Chezhegov, S., Rogozin, A., Kovalev, D., Beznosikov, A., Sholokhov, A., & Gasnikov, A. (2024). Decentralized Finite-Sum Optimization over Time-Varying Networks. arXiv preprint arXiv:2402.02490.
  4. Rogozin, A., Beznosikov, A., Dvinskikh, D., Kovalev, D., Dvurechensky, P., & Gasnikov, A. (2024). Decentralized saddle point problems via non-Euclidean mirror prox. Optimization Methods and Software, 1-26.
  5. Metelev, D., Rogozin, A., Gasnikov, A., & Kovalev, D. (2024). Decentralized saddle-point problems with different constants of strong convexity and strong concavity. Computational Management Science, 21(1), 5.
  6. Vedernikov, R. A., Rogozin, A. V., & Gasnikov, A. V. (2023). Decentralized Conditional Gradient Method on Time-Varying Graphs. Programming and Computer Software, 49(6), 505-512.
  7. Chen, J., Lobanov, A. V., & Rogozin, A. V. (2023). Distributed min-max optimization using the smoothing technique. Компьютерные исследования и моделирование, 15(2), 469-480.
  8. Chezhegov, S., Rogozin, A., & Gasnikov, A. (2023, June). On decentralized nonsmooth optimization. In International Conference on Mathematical Optimization Theory and Operations Research (pp. 25-38). Cham: Springer Nature Switzerland.
  9. Rogozin, A., Gasnikov, A., Beznosikov, A., & Kovalev, D. (2023). Decentralized Convex Optimization over Time-Varying Graphs. In Encyclopedia of Optimization (pp. 1-17). Cham: Springer International Publishing.
  10. Nguyen, N. T., Rogozin, A., Metelev, D., & Gasnikov, A. (2023, December). Min-max optimization over slowly time-varying graphs. In Doklady Mathematics (Vol. 108, No. Suppl 2, pp. S300-S309). Moscow: Pleiades Publishing.
  11. Metelev, D., Rogozin, A., Kovalev, D., & Gasnikov, A. (2023, July). Is consensus acceleration possible in decentralized optimization over slowly time-varying networks?. In International Conference on Machine Learning (pp. 24532-24554). PMLR.
  12. Gorbunov, E., Rogozin, A., Beznosikov, A., Dvinskikh, D., & Gasnikov, A. (2022). Recent theoretical advances in decentralized distributed convex optimization. In High-Dimensional Optimization and Probability: With a View Towards Data Science (pp. 253-325). Cham: Springer International Publishing.
  13. Yarmoshik, D., Rogozin, A., Khamisov, O. O., Dvurechensky, P., & Gasnikov, A. (2022, June). Decentralized convex optimization under affine constraints for power systems control. In International Conference on Mathematical Optimization Theory and Operations Research (pp. 62-75). Cham: Springer International Publishing.
  14. Rogozin, A., Yarmoshik, D., Kopylova, K., & Gasnikov, A. (2022, September). Decentralized strongly-convex optimization with affine constraints: Primal and dual approaches. In International Conference on Optimization and Applications (pp. 93-105). Cham: Springer Nature Switzerland.
  15. Chezhegov, S., Novitskii, A., Rogozin, A., Parsegov, S., Dvurechensky, P., & Gasnikov, A. (2022). A general framework for distributed partitioned optimization. IFAC-PapersOnLine, 55(13), 139-144.
  16. Parsegov, S., Shcherbakov, P., Chebotarev, P., Erofeeva, V., & Rogozin, A. (2022). Laplacian spectra of two-layer hierarchical cyclic pursuit schemes. IFAC-PapersOnLine, 55(13), 246-251.
  17. Rogozin, A., Bochko, M., Dvurechensky, P., Gasnikov, A., & Lukoshkin, V. (2021, December). An accelerated method for decentralized distributed stochastic optimization over time-varying graphs. In 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 3367-3373). IEEE.
  18. Beznosikov, A., Scutari, G., Rogozin, A., & Gasnikov, A. (2021). Distributed saddle-point problems under data similarity. Advances in Neural Information Processing Systems, 34, 8172-8184.
  19. Kovalev, D., Shulgin, E., Richtárik, P., Rogozin, A. V., & Gasnikov, A. (2021, July). ADOM: accelerated decentralized optimization method for time-varying networks. In International Conference on Machine Learning (pp. 5784-5793). PMLR.
  20. Rogozin, A., Lukoshkin, V., Gasnikov, A., Kovalev, D., & Shulgin, E. (2021). Towards accelerated rates for distributed optimization over time-varying networks. In Optimization and Applications: 12th International Conference, OPTIMA 2021, Petrovac, Montenegro, September 27–October 1, 2021, Proceedings 12 (pp. 258-272). Springer International Publishing.
  21. Beznosikov, A., Rogozin, A., Kovalev, D., & Gasnikov, A. (2021). Near-optimal decentralized algorithms for saddle point problems over time-varying networks. In Optimization and Applications: 12th International Conference, OPTIMA 2021, Petrovac, Montenegro, September 27–October 1, 2021, Proceedings 12 (pp. 246-257). Springer International Publishing.
  22. Pasechnyuk, D., Maslovskiy, A., Gasnikov, A., Anikin, A., Rogozin, A., Gornov, A., … & Begicheva, M. (2021). Non-convex optimization in digital pre-distortion of the signal. arXiv preprint arXiv:2103.10552.
  23. Trimbach, E., & Rogozin, A. (2021, July). An acceleration of decentralized sgd under general assumptions with low stochastic noise. In International Conference on Mathematical Optimization Theory and Operations Research (pp. 117-128). Cham: Springer International Publishing.
  24. Rogozin, A., & Gasnikov, A. (2020). Penalty-based method for decentralized optimization over time-varying graphs. In Optimization and Applications: 11th International Conference, OPTIMA 2020, Moscow, Russia, September 28–October 2, 2020, Proceedings 11 (pp. 239-256). Springer International Publishing.
  25. Dvinskikh, D., Gasnikov, A., Rogozin, A., & Beznosikov, A. (2020). Parallel and Distributed algorithms for ML problems. arXiv preprint arXiv:2010.09585.
  26. Rogozin, A., Uribe, C. A., Gasnikov, A. V., Malkovsky, N., & Nedić, A. (2019). Optimal distributed convex optimization on slowly time-varying graphs. IEEE Transactions on Control of Network Systems, 7(2), 829-841.

 

PhD, Moscow Institute of Physics and Technology, 2023.