apanayi

Andreas Panayi

Professor of the Practice
Center for Digital Engineering

Andreas Panayi joined Skoltech as the Professor of the Practice at the Center for Digital Engineering with extensive global experience in automotive and aerospace product development. His expertise focuses on leveraging computer aided engineering methodologies to enable the digital transformation of traditional analysis methods and expedite the product development cycle in order to develop efficient and reliable final products while reducing production and operating costs.

He holds a Ph.D. in Mechanical Engineering from Michigan State University where his research work was focused on the development of numerical models for the assessment of internal combustion engine performance. He worked with Ford Motor Company and Cummins to test and validate these models.

Dr. Panayi transitioned to the aerospace industry in 2011 by joining Boeing. He worked on the development of the methods of analysis for composite joints – the best modeling practices for interlaminar analysis using finite element methods and their validation through testing. He developed and implemented an automation framework that made these methodologies accessible with ease and straightforward human interaction, while ensuring consistency, accuracy, repeatability, and efficiency throughout the design cycle. He was instrumental in the certification of several new airplane programs and their derivatives. In more recent years, he was involved in the digital transformation where he led the Mechanical and Structural Engineering efforts for the Boeing Model Based-Engineering Global Center. He researched and developed prototypes for the infrastructure that would enable the seamless data exchange between cross-disciplinary teams so that well-informed engineering decisions are made early on in the design cycle to eliminate expensive rework, improve product quality and reduce in-service costs, while ensuring safety and reliability. He has presented multiple times on these topics over the years at the internal Boeing Technical Excellence Conference, and he won the Best Paper in Structures for his work on the automation framework for composite joint analysis. He holds one patent and four trade secrets. Recognized for his contributions, advancements and transformations in aerospace product development through modeling and simulation, he was inducted to the Boeing Technical Fellowship as an Associate Technical Fellow in Structures.

Dr. Panayi will continue his work in teaching, research and innovation at the Center for Digital Engineering with the Cyber-Physical Systems Laboratory and the Systems Thinking Group, to investigate and further advance the technologies for product lifecycle management ensuring that the next engineering leaders will have the right tools to innovate and thrive.

Overview:

At the Cyber-Physical Systems Laboratory, we blend cutting-edge research with practical engineering challenges to address real-world problems and shape the future. The projects span from active initiatives that need skilled collaborators to conceptual ideas awaiting inspired minds to bring them to life. Whether it is revolutionizing transportation, enhancing safety, pioneering sustainable practices, or developing groundbreaking technologies, there is a place for everyone to contribute. Join us to tackle meaningful challenges, collaborate with multidisciplinary teams, and be part of innovations that make a difference. Together, we will turn possibilities into reality by advancing and transforming engineering.

 

Research Projects:

Engineering Revolution at the Cyber-Physical Systems Laboratory

This initiative focuses on developing cutting-edge solutions within an integrated and applied engineering ecosystem. By leveraging digital and product lifecycle management (PLM) tools, the lab creates sustainable and innovative products using model-based systems engineering (MBSE) and digital twin technologies. The lab also emphasizes educational advancements, equipping students and professionals with the tools to address future engineering challenges.

 

Unmanned Trains: A Smarter Future on Rails

Aimed at revolutionizing rail transport, this project develops prescriptive analytics and digital twin solutions to enhance the operational reliability of unmanned trains on the Moscow Central Ring. By predicting critical system failures, the project reduces downtime, optimizes maintenance schedules, and ensures continuous operation. With 64 digital twin instances planned, the initiative promises smarter diagnostics for safer, cost-effective railway systems.

 

Smart-Rails: Ensuring Safety Across the Tracks

The Smart-Rails system applies ultrasonic guided waves to detect and predict rail damage in real-time, addressing the growing demand for safer rail infrastructure. This project develops a digital twin-driven approach to monitor rail integrity and prevent catastrophic failures. By leveraging advanced analytics and field testing, the system will offer a proactive solution for over 85,000 km of Russian railways under increasing stress from heavier and faster trains.

 

DroneSpect: Revolutionizing Aircraft Inspections

DroneSpect introduces advanced drone-based solutions for visual inspection of aircraft structures. This system will reduce inspection time by up to 85%, addressing the global shortage of aviation maintenance professionals and improving operational efficiency. By complementing human inspectors, DroneSpect will offer a practical approach to ensure safety and reliability in the rapidly expanding aviation industry.

 

STEM Digital Twins: Predicting the Future of Maintenance

This project establishes a standardized methodology for building Structured, Traceable, Efficient, and Manageable (STEM) digital twins to enhance predictive and prescriptive maintenance. By integrating these systems across use cases like train systems and aircraft, the project aims to transition from reactive to predictive strategies, reducing maintenance costs and improving operational efficiency.

 

Machine Learning Meets Structural Engineering

Focusing on engineering innovation, this project develops synthetic datasets for finite element analysis (FEA) combined with machine learning techniques. The goal is to automate stress analysis processes, streamline decision-making, and enhance structural reliability. This interdisciplinary effort equips participants with skills relevant to emerging fields in engineering and data science.

 

AI Engineering Agent: Bridging Intelligence and Innovation

This project integrates large language models (LLMs) to revolutionize engineering processes, from regulatory compliance to product certification. The agent generates simulation inputs, streamlining workflows and improving efficiency. It promises to bridge the gap between machine learning and complex engineering challenges.

 

Safeguarding Seal Habitats: Smart Water Systems

Focusing on water quality in zoo environments, this project develops a predictive maintenance system for pumps in the Moscow Zoo’s seal habitat. By monitoring parameters like vibration, pressure, and temperature, the system ensures the continuous operation of critical equipment, protecting animal welfare through early failure detection and timely maintenance.

 

The Flying Weed Terminator: Taking the Fight to Hogweed

Combating invasive hogweed, this project designs an autonomous drone system equipped with computer vision and herbicide sprayers. The system precisely targets hogweed clusters, reducing human effort and exposure to toxic sap. By automating weed control, the project offers an innovative solution to a growing ecological challenge.

 

The Smart Grill: Automating Culinary Perfection

This project introduces an automated kebab grill with sensors for temperature control, automatic skewer rotation, and height adjustments. By optimizing grilling processes, the Smart Grill ensures even cooking, reduces manual effort, and enhances user experience, blending convenience with culinary precision.

 

Digital Twins for Additive Manufacturing: Crafting Precision in 3D Printing

Aiming to improve the consistency and reliability of 3D-printed parts, this project integrates digital twins with machine learning algorithms for real-time monitoring of additive manufacturing processes. By minimizing physical tests and variability, the system streamlines production and certification, advancing industrial 3D printing.

 

Legacy to Cutting Edge: Simplifying Complex Systems

This project addresses challenges in managing complex systems through requirements traceability and standardized engineering workflows using PLM tools. By leveraging modern process orchestration software, the research demonstrates the feasibility of orchestrating and optimizing legacy analysis methods for modern engineering applications.

 

tPAD: Transforming Prescriptive Analytics into Reality

the Prescriptive Analytics Demonstrator (tPAD) test bed explores prescriptive analytics by simulating malfunction scenarios in a controlled environment. Using artificial vibrations in rotating shafts, the project develops accurate analytics solutions to predict and prevent failures. Recognized for its educational innovation, tPAD bridges theoretical concepts with real-world engineering applications.

 

Digital Twin Farming: Sustainable Solutions for Indoor Agriculture

This project develops a simulation-based digital twin for energy-efficient indoor agriculture systems, addressing high energy consumption challenges in vertical farms and greenhouses. By modeling HVAC systems, microclimates, and control systems, the research supports sustainable farming practices, enabling participation in energy efficiency initiatives and reducing operational costs. This will be a joined project with the Center for Agro Technologies.

Journal Publications

  1. Schock, H., Brereton, G., Panayi, A. et al., 2013, “Prospects for implementation of thermoelectric generators as waste heat recovery systems in class 8 truck applications”, J. Energy Resour. Technol., Vol. 135(2), 022001
  2. Panayi, A. P., Diaz, A. R., Schock, H. J., 2009, “On the Optimization of Piston Skirt Profiles using a Pseudo-Adaptive Response Surface Method”, Structural and Multidisciplinary Optimization, Vol. 38(3), pp. 317-331
  3. Panayi, A. P., Schock, H. J., 2008, “Approximation of the Integral of the Asperity Height Distribution for the Greenwood-Tripp Asperity Contact Model,” IMechE, Part J: J. Engineering Tribology, Vol. 222(J2), pp. 165-169
  4. Panayi, A. P., Schock, H. J., 2008, “Avenues for Predicting Piston Wear: Employing 2D and 3D Numerical Piston Dynamics Models,” SAE Int. J. Engines Vol. 1(1), pp. 713-722 (presented at SAE 2008 World Congress, Detroit, Michigan)

 

Conference Presentations and Proceedings

  1. (submitted) Rumyantsev, I., Panayi, A., Emelianov, V., “Leveraging Large Language Models to Streamline Engineering Analysis Processes for Readily Verifiable Models”, 25th International Conference on Engineering Design, Houston, Texas, USA, August 11-14, 2025
  2. (submitted) Ershenko, D., Derbysheva, G., Panayi, A., Fortin, C., “Quantitative metrics for validation and decision-making in Digital Twins: a comparative study on a railway braking system”, 25th International Conference on Engineering Design, Houston, Texas, USA, August 11-14, 2025
  3. (accepted) Knoll, D., Uglov, T., Sitnikov, M., Panayi, A., “Development of digital-twin models for predictive diagnostic systems: a train case study”, 2025 IEEE International Systems Conference (SysCon), Montreal, Canada, April 7-10, 2025
  4. Golub, M., Arsenov, M., Kanishchev, K., Doroshenko, O., Eremin, A., Khanazaryan, A., Panayi, A., Emelianov, V., Rumyantsev, I., Shil’ko, S., Vlasov, V., “Characterization of material properties of FDM plastics using laser Doppler vibrometer acquired dispersion properties of elastic guided waves”, The 7th International Symposium on Laser Ultrasonics and Advanced Sensing (LU2024), Nanjing, Chine, October 21-25, 2024
  5. Golub, M., Fomenko, S., Kanishchev, K., Khanazaryan, A., Arsenov, M., Makarenko, A., Panayi, A., Emelianov, V., Rumyantsev, I., “Investigation of guided wave propagation in elastic metamaterial plates with arrays of interfacial crack-like voids by laser Doppler vibrometry”, The 7th International Symposium on Laser Ultrasonics and Advanced Sensing (LU2024), Nanjing, Chine, October 21-25, 2024
  6. Ershenko, D., Sadeghzadeh, S., Fortin, C., Panayi, A., “On the integration of the SAPPhIRE model in the Digital Twin development process: a train braking system use case”, IFIP 21st International Conference on Product Lifecycle Management, Bangkok, Thailand, July 7-10, 2024
  7. Panayi, A., Zhidyaev, K., Kravchenko, S., Dadunashivili, S., “On the Employment of Computer Aided Engineering for the Development of Reliable and Affordable Composite Aircraft Structures”, XVII International Conference on Mechanics of Composites Materials, Riga, Latvia, June 2-6, 2014
  8. Panayi, A. P., Schock, H. J., 2007, “Investigations on Piston Secondary Dynamics: A Model that Considers Translation Along the Wrist-Pin and Second Land Interactions with the Cylinder Bore,” ASME Proceedings of IMECE2007, Paper No. IMECE2007-41264 (presented at ASME 2007 International Mechanical Engineering Congress and Exposition, Seattle, Washington)
  9. Panayi, A. P., Schock, H. J., 2006, “Piston Finite Element Modeling for the Estimation of Hydrodynamic and Contact Forces and Moments,” ASME Proceedings of ICEF2006, Paper No. ICEF2006-1587 (presented at ASME Internal Combustion Engine Division 2006 Fall Technical Conference, Sacramento, California)
  10. Panayi, A., Schock, H., Chui, B. K., Ejakov, M., 2006, “Parameterization and FEA Approach for the Assessment of Piston Characteristics,” SAE Paper 2006-01-429 (presented at SAE 2006 World Congress, Detroit, Michigan)
  11. Panayi, A., “The Costs of Downforce: the Effects of Angle of Attack of the Rear Wing of a Formula 1 Car on Downforce and Drag,” ASME Regional Student Competition 2004, Region I, University of Vermont, Burlington, Vermont, April 1-3, 2004

 

Internal (closed-door) Conference Presentations

* BTEC : Boeing Technical Excellence Conference

  1. Panayi, A., et. al., “The Orchestrator – An MBE Enabler for Structural Analysis”, Boeing Research & Technology Integrated Model Based Methods and Tools Workshop, December 1, 2021
  2. Panayi, A., et. al., “787 Side-of-Body Fracture Toughness Analysis: A Methodology Expansion to Support Commonality and Schedule”, BTEC 27, July 26-29, 2021
  3. Panayi, A., et. al., “Empowering the Stress Analyst with a Personal Assistant”, BTEC 26, July 27-30, 2020
  4. Panayi, A., et. al., “Stress Analysis Integration with the Model-Based Engineering Environment”, Boeing Research & Technology Integrated Model Based Methods and Tools Workshop, April 7, 2020
  5. Panayi, A., et. al., “Accelerating the 787: Leveraging Innovation at the Side-of-Body to Enable Factory Flow”, BTEC 26, July 29-Aug 2, 2019
  6. Panayi, A., et. al., “Disrupting the Legacy: the 777-9 Horizontal Stabilizer Interlaminar Design Solutions”, BTEC 25, St. Charles, Missouri, May 7-10, 2018
  7. Panayi, A., et. al., “Strain Value – an Ingredient of Performance”, BTEC 24, Charleston, South Carolina, May 15-18, 2017
  8. Panayi, A., et al., “Accelerating the 777X Side-of-Body Development Cycle Utilizing an Advanced, yet Simpler Finite Element Approach”, BTEC 23, Bellevue, Washington, July 11-14, 2016
  9. Panayi, A., et. al., “On the Development of Physically Real Submodels, yet Resilient to Modeling Method Enhancements”, BTEC 22, Los Angeles, California, June 22-25, 2015
  10. Panayi, A., et. al., “787 Family of Side-of-Body Global Models: Developing, Sustaining and Maintaining the Knowledge within The Company”, BTEC 22, Los Angeles, California, June 22-25, 2015
  11. Panayi, A., et. al., “On the Interlaminar Methods of Analysis Validation for the 787-9 Upper Side-of-Body Joint Vent Stringers”, BTEC 21, St. Charles, Missouri, May 19-22, 2014
  12. Panayi, A., et. al., “787 Upper Side-of-Body FEM Automation Tools”, BTEC 19, Los Angeles, California, May 9-11, 2012,  Best Paper in Structures Award

 

Андреас Панаи присоединился к Сколтеху в качестве Профессора в Центре Системного Проектирования с обширным мировым опытом в области разработки продукции для автомобильной и аэрокосмической промышленности. Эксперт в области использования методологий компьютерного проектирования для обеспечения цифровой трансформации традиционных методов анализа и ускорения цикла разработки продукта для создания эффективных и надежных конечных продуктов при одновременном снижении производственных и эксплуатационных затрат.

Он имеет докторскую степень в области машиностроения («PhD in Mechanical Engineering») от Университета Штата Мичиган, где его исследовательская работа была сосредоточена на разработке численных моделей для оценки характеристик двигателя внутреннего сгорания. Он работал с «Ford Motor Company» и «Cummins», чтобы протестировать, проверить и утвердить эти модели.

Д-р Панаи перешел в аэрокосмическую отрасль, перейдя в компанию «Boeing», и с 2011г. он работает в России. Он работал над разработкой методов анализа композитных соединений — лучших практик моделирования для межслойного анализа с использованием методов конечных элементов и их проверки посредством испытаний. Он разработал и внедрил структуру автоматизации, которая сделала эти методологии доступными с легкостью и простым взаимодействием с человеком, обеспечивая при этом согласованность, точность, воспроизводимость и эффективность на протяжении всего цикла проектирования. В последние годы он участвовал в цифровой трансформации, где руководил команду по машиностроению и проектированию конструкций в глобальном центре проектирования на основе моделей Боинга («Boeing MBE Global Center»). Он исследовал и разработал прототипы инфраструктуры в рамках «PLM», которая обеспечила бы беспрепятственный обмен данными между междисциплинарными командами, от концепции продукта до эксплуатации, чтобы хорошо обоснованные инженерные решения принимались на ранних этапах цикла проектирования, и для исключения дорогостоящих доработок, улучшения качества продукции и снижения эксплуатационных расходов, обеспечив при этом безопасность и надежность продукта. На протяжении многих лет он неоднократно выступал по этим темам на внутренней конференции «Boeing Technical Excellence Conference» и получил награду за лучший доклад по конструкциям за свою работу над структурой автоматизации для анализа составных соединений. Он владеет одним патентом и четырьмя коммерческими. Он сыграл важную роль в сертификации нескольких новых авиационных программ и их модификации. Его вклад, достижения и преобразования в области разработки продукции для аэрокосмической отрасли посредством моделирования и симуляции были признаны, и он стал членом «Boeing Technical Fellowship» в ранг «Associate Technical Fellow (ATF)», ранг который присваивается только 3%-ам лучших инженеров Боинга по всему миру.

Д-р Панаи продолжит свою работу по обучению, исследованиям и инновациям в Центре Системного Проектирования с Лабораторией Киберфизических Систем и Группой Системного Мышления, чтобы исследовать и развивать технологии для управления жизненным циклом продукта, гарантируя, что следующие инженеры-лидеры будут иметь правильные инструменты для инноваций и процветания.