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Abstract.
Knowledge graphs such as DBpedia, Freebase or Wikidata always contain a taxonomic backbone that allows the arrangement

and structuring of various concepts in accordance with hypo-hypernym (“class-subclass”) relationship. With the rapid growth of
lexical resources for specific domains, the problem of automatic extension of the existing knowledge bases with new words is
becoming more and more widespread. In this paper, we address the problem of taxonomy enrichment which aims at adding new
words to the existing taxonomy.

We present a new method which allows achieving high results on this task with little effort. It uses the resources which exist
for the majority of languages, making the method universal. We extend our method by incorporating deep representations of
graph structures like node2vec, Poincaré embeddings, GCN etc. that have recently demonstrated promising results on various
NLP tasks. Furthermore, combining these representations with word embeddings allows us to beat the state of the art.

We conduct a comprehensive study of the existing approaches to taxonomy enrichment based on word and graph vector
representations and their fusion approaches. We also explore the ways of using deep learning architectures to extend taxonomic
backbones of knowledge graphs. We create a number of datasets for taxonomy extension for English and Russian. We achieve
state-of-the-art results across different datasets and provide an in-depth error analysis of mistakes.

Keywords: taxonomy enrichment, graph vector representations, word embeddings, graph convolutional auto-encoder

1. Introduction

The central idea of Semantic Web is to make the
content of the Internet pages machine-interpretable.
For that, web pages should be linked to ontologies [1,
2] — databases which contain the information on
classes of objects, their properties, and relations be-
tween the classes. The relations between objects are
particularly important in an ontology, because they
form its structure. They can be of different types cor-
responding to different types of relationships between
real-world objects. One of the most important relation-
ships is the class-subclass relation. It allows organising

*Equal contribution with Mikhail Tikhomirov. Corresponding
author: E-mail: irina.nikishina@skoltech.ru.

entities into a taxonomy — a tree structure where en-
tities are represented as nodes and the edges between
them denote subclass-of or instance-of relationship.
The class-subclass relations and taxonomies built from
them are crucial for understanding the place and the
purpose of an object or a concept in the world. This
relation and the hierarchical structure created by it are
also a basis of many knowledge bases and knowledge
graphs — a particular type of knowledge bases where
objects are organised in a graph structure. There, the
nodes of a graph are objects, and the edges of a graph
are relations between the objects.

To support the use of specific knowledge base
structures, such as thesauri or taxonomies, there ex-
ist specifications and standards classification schemes.
For instance, Simple Knowledge Organization Sys-
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tems (SKOS)1 define several types of lexical-semantic
relations in the terms of semantic web, e.g. “has
broader/narrower”, “has exact match”, and “is in map-
ping relation with”. SKOS are used to create structures
like thesauri.

However, SKOS does not fully comply with our tax-
onomy. The class-subclass relation which is the base
of taxonomies is a relation between objects X and Y
such that the sentence “X is a kind of Y” is accept-
able for native speakers. On the other hand, the closest
SKOS analogue of taxonomic class-subclass relation
is the “broader term relation”. It is different from the
class-subclass relation, because it is less specific. For
example, it can include the part-whole relations.

The usefulness of an ontology or a knowledge base
depends largely on its completeness and its ability to
fully reflect the real world. However, since the world
is changing, the ontologies need to be constantly up-
dated to stay relevant. There currently exist compre-
hensive knowledge bases such as Freebase, DBPedia
or Wikidata as well as ontologies for specific domains.
Many areas of knowledge require their own knowledge
bases, and all of them need to be maintained and ex-
tended. This is an expensive and time-consuming pro-
cess which can only be conducted by an expert who is
proficient in the discipline and understands the struc-
ture of a knowledge base. Thus, in order to speed up
and simplify this task, it becomes more and more im-
portant to develop systems that could automatically en-
rich the existing knowledge bases with new words or at
least facilitate the manual extension process. The task
of automatically or semi-automatically adding new en-
tities to hierarchical structures is referred to as taxon-
omy enrichment.

In this work, we aim at reviewing the existing tax-
onomy enrichment models and propose new methods
which address their drawback. We also aim at evalu-
ating the scalability of different methods to new lan-
guages and datasets.

The state-of-the-art taxonomy enrichment methods
have two main drawbacks. First of all, they often
use unrealistic formulations of the task. For exam-
ple, SemEval-2016 task 14 [3] which was the first ef-
fort to evaluate this task in a controlled environment,
provided definitions of the query words (words to be
added to a taxonomy). This is very informative re-
source, so the majority of the presented methods heav-
ily depended on those definitions [4, 5]. However, in

1https://www.w3.org/2004/02/skos/intro

the real-world scenarios, such information is usually
unavailable, which makes the developed methods in-
applicable. We tackle this problem by testing our new
methods and the state-of-the-art methods in a realistic
setting.

Another gap in the existing research is that the ma-
jority of methods use the information from only one
source. Namely, some researchers use the information
from distributional word embeddings, whereas others
consider graph-based models which represent a word
based on its position in a taxonomy. Our intuition is
that the information from these two sources is com-
plementary, so combining them can improve the per-
formance of taxonomy enrichment models. Therefore,
we propose a number of ways to incorporate various
sources of information.

First, we propose the new DWRank method which
uses only distributional information from pre-trained
word embeddings and is similar to other existing meth-
ods. We then enable this method to incorporate the
different sources of graph information. We compare
the various ways of getting the information from a
knowledge graph. Finally, another modification of our
method successfully combines the information from
different sources, beating the current state of the art.

To place our models in the context of the research
on taxonomy enrichment, we compare them with a
number of state-of-the-art models. To the best of our
knowledge, this is the first large-scale evaluation of
taxonomy enrichment methods. We are also the first to
evaluate the methods on datasets of different sizes and
in different languages.

This work is an extended version of the work de-
scribed in [6–8]. The novelty of this particular article
as compared to the previous publications is as follows:

1. We present a new taxonomy enrichment method
DWRank which combines distributional infor-
mation and the information extracted from Wik-
tionary.

2. We present an extension of DWRank called
DWRank-Graph which uses various graph-
based representations via a common interface.

3. We present DWRank-Meta — an extension of
DWRank which combines the information from
different sources and beats the state-of-the-art
models.

4. We present WBSR — a method for taxonomy ex-
tension which leverages the information from the
Web. This approach is the current state of the art
in the task.

https://www.w3.org/2004/02/skos/intro
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5. We conduct a large-scale computational study
of various approaches to taxonomy enrichment,
which features multiple methods (including ours
as well as state-of-the-art approaches), multiple
datasets and languages.

6. We present datasets for studying the evolution
of wordnets for English and Russian, extending
the monolingual setup of the RUSSE’2020 shared
task [9] with a larger Russian dataset and similar
English versions.

7. We explore the benefits of meta-embeddings
(combinations of embeddings) and graph embed-
dings for the task of taxonomy enrichment.

8. We provide an in-depth error analysis of different
types of mistakes of the state-of-the art models.

9. We provide mappings to WordNet Linked Open
Data (LOD) Inter-Lingual Index (ILI) from Rus-
sian to English synsets. A dataset of multilingual
hypernyms opens possibilities for various use-
cases for cross-lingual operations on taxonomies.

We release all our code and datasets to enable fur-
ther research in this direction.2

The rest of the paper is organised as follows. In
Section 2 we formulate the task and provide the rel-
evant definitions. Section 3 is devoted to the existing
work on taxonomy enrichment. Then, in Section 4 we
present our datasets and describe their creation pro-
cess and features. Sections 5, 6, and 7 contain the de-
scriptions of our methods: in Section 5 we introduce
our core method DWRank and in Sections 6 and 7 de-
scribe its extensions DWRank-Graph and DWRank-
Meta. We report the performance of our models and
compare them with the other approaches in Section 8.
Finally, in Section 9 we analyse the potential limita-
tions of our methods.

2. Task Formulation and Definitions

In this subsection we formulate the task and explain
the main concepts and task-related terms.

2.1. Task Formulation

Let us consider an example of taxonomy. Figure 1
demonstrates a subgraph for the word “Papuan” re-
trieved from WordNet. There, each concept has one
or more parents (concepts which it is derived from).

2https://github.com/skoltech-nlp/diachronic-wordnets

The parents in their turn have their own parents, and
one can trace the word affiliation until the most ab-
stract root concepts of the taxonomy. Here, the word
“Papuan” is attached to the synsets “indonesian” and
“natural_language” as it can mean both an ethnicity
and a language. Note that words can have multiple par-
ents for different reasons. Two or more parents can
point to the fact that a word has multiple meanings
(as in the case with “Papuan”). Alternatively, a word
meaning can be a combination of meanings of two
higher-level concepts.

Figure 1. Example of adding a new word “Papuan” to the taxonomy

Therefore, in order to add a word to a taxonomy, we
need to find its hypernym among the entities (synsets
in case of wordnets) of this taxonomy. Here, we refer
to a word absent from the taxonomy (a word which
we would like to add) as a query word. Our task is to
attach query words to an existing taxonomic tree.

The task of finding a single suitable hypernym
synset is difficult for a machine, because the number
of nodes in the existing taxonomy can be very large
(e.g. in WordNet the number of noun synsets is around
29,000). Thus, a model trained to solve this task will
inevitably return many false answers if asked to pro-
vide only one synset candidate. Moreover, as we can
see from Figure 1, a word may have multiple hyper-
nyms.

Thus, in the majority of works on taxonomy en-
richment the requirement of providing a single cor-
rect answer is relaxed. Instead of that, a common ap-
proach is to provide k (typically 10 to 20) most suitable
candidates. This list is more likely to contain correct
synsets. This setting is also consistent with the man-
ual computer-assisted annotation. Presenting an anno-
tator with a small list of candidates will facilitate the

https://github.com/skoltech-nlp/diachronic-wordnets
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taxonomy extension process: annotators will only have
to look through a short list of high-probability hyper-
nym candidates instead of searching hypernyms in a
list of all synsets of the taxonomy. Thus, we formulate
the task of taxonomy extension as a soft ranking prob-
lem, where the synsets are ranked according to their
suitability for a given word.

This is an established approach to this task, the same
formulation was also used in research works on taxon-
omy enrichment and in taxonomy enrichment shared
tasks [3, 9].

2.2. Definitions

In this section, we provide several key definitions
crucial for understanding of our work.

Knowledge base is a data structure used to store
knowledge which comprise of concepts and relations
(known as TBox-es) and individuals, concept, and re-
lation instantiations (also known as ABox-es) [10].

Knowledge graph is a knowledge base that uses a
graph-structured data model to represent data. For-
mally, a knowledge graph G is a set of triplets
{h, r, t} ⊆ E×R×E where E is the entity set and R is
the relation set. Normally, knowledge graphs comprise
multiple types of relations R.

Synset is a set S ⊆ {s1, ..., sn} of words or phrases
corresponding to a concept or a knowledge base entity
in the set E. Synset is the major element which denotes
a node in a knowledge graph G, therefore, in our case
S equals E.

Hypernymy relation is a relation r ∈ R. According
to [11], hypernymy relation exists between objects X
and Y if native speakers accept sentences constructed
using such patterns as “An X is a (kind of) Y”. Hy-
pernymy is transitive and asymmetrical. Such relations
are central organizing relations for nouns and verbs in
WordNet [11]. In fact, hypernymy relations comprise
class (or subsumption) relations and instantiation re-
lations considered in ontology studies and description
logics [12].

Taxonomy is a special case of a knowledge graph G.
It is a tree-based structure where nodes from the set
E are connected with the hypernymy relation r. Thus,
the set of relations R = {r}. Elements included in the
set E are words or concepts. In a taxonomy G they
are arranged in a hierarchical structure from the most
abstract concept (root) to the most specific concepts
(leaves).

Query words (new words) — words to be added to
the taxonomy T , usually manually collected by ex-
perts. In this paper, we use the following notation for
this set Q ⊆ {q1, ..., qn}. Note that words may be am-
biguous: one qi can correspond to more than one synset
si.

Knowledge graph completion is a task of complet-
ing a Knowledge Graph G by finding a set of missing
triples {h, r, t|h ∈ E, r ∈ R, t ∈ E, h, r, t /∈ G}.

Taxonomy enrichment can be considered as a spe-
cial case of the knowledge base completion task. This
task aimed at associating each new word q ∈ Q, which
is not yet included in the taxonomy T , with the appro-
priate hypernyms from it.

3. Related Work

There exist numerous approaches to knowledge
base completion, which make use of various neural
network architectures described in review papers [13,
14]. Most of them apply low-dimensional graph em-
beddings [15, 16], deep learning architectures like au-
toencoders [17] or graph convolutional networks [18–
20]. Another group of approaches makes use of ten-
sor decomposition approaches: Tucker decomposition
[21] and Canonical Polyadic decomposition (CAN-
DECOMP/PARAFAC) [22, 23]. Another task, which
is closely related to the taxonomy creation is the
Knowledge base construction. There exists multiple
approaches solving the problem: Text2Onto [24] a pil-
lar language-independent approach which applies user
interaction or fully automated methods [25, 26] which
apply text-mining tools and external sources, which
are mostly applied for the scholarly domain. However,
knowledge base completion task assumes a generic
graph while in the taxonomy enrichment task deals
with tree structures and specific methods of tree pro-
cessing are commonly used in this field. In this arti-
cle we focus on this specific task and narrow down
our scope to enrichment and population of taxonomic
structures. It should be noted however that the majority
of the ontologies and knowledge bases possess some
kind of taxonomic backbone and therefore the task of
construction and maintaining such a semantic structure
is fundamental.

The existing studies on the taxonomies can be di-
vided into three groups. The first one addresses the Hy-
pernym Discovery problem [27]: given a word and a
text corpus, the task is to identify hypernyms in the
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text. However, in this task the participants are not given
any predefined taxonomy to rely on. The second group
of works deals with the Taxonomy Induction problem
[28–30], in other words, creation of a taxonomy from
scratch. Finally, the third direction of research is the
Taxonomy Enrichment task: the participants extend a
given taxonomy with new words. In this article, we fo-
cus on the taxonomy enrichment task and explore var-
ious approaches based on text and graph embeddings
and their combinations to the solution of this problem.
The following sections provide overview of the various
strains of research related to the given problem.

3.1. Prior Art on Taxonomy Enrichment

Until recently, the only dataset for the taxonomy en-
richment task was created under the scope of SemEval-
2016. It contained definitions for the new words, so the
majority of models solving this task used the defini-
tions. For instance, Deftor team [4] computed defini-
tion vector for the input word, comparing it with the
vector of the candidate definitions from WordNet using
cosine similarity. Another example is TALN team [5]
which also makes use of the definition by extracting
noun and verb phrases for candidates generation.

This scenario may be unrealistic for manual anno-
tation because annotators are writing a definition for
a new word and adding new words to the taxonomy
simultaneously. Having a list of candidates would not
only speed up the annotation process but also iden-
tify the range of possible senses. Moreover, it is pos-
sible that not yet included words may have no defini-
tion in any other sources: they could be very rare (“ap-
paratchik”, “falanga”), relatively new (“selfie”, “hash-
tag”) or come from a narrow domain (“vermiculite”).

Thus, following RUSSE-2020 shared task [9], we
stick to a more realistic scenario when we have no def-
initions of new words, but only examples of their us-
age. For this shared task we provide a baseline as well
as training and evaluation datasets based on RuWord-
Net [31] which will be discussed in the next section.
The task exploited words which were recently added to
the latest release of RuWordNet and for which the hy-
pernym synsets for the words were already identified
by qualified annotators. The participants of the compe-
tition were asked to find synsets which could be used
as hypernyms.

The participated systems mainly relied on vector
representations of words and the intuition that words
used in similar contexts have close meanings. They
cast the task as a classification problem where words

need to be assigned one or more hypernyms [32] or
ranked all hypernyms by suitability for a particular
word [33]. They also used a range of additional re-
sources, such as Wiktionary, dictionaries, additional
corpora [34]. Interestingly, only one of the well-
performing models [35] used context-informed em-
beddings (BERT) or external tools such as online Ma-
chine Translation (MT) and search engines (the best-
performing model denoted as Yuriy in the workshop
description paper).

In this paper, we would like to work out methods
which depend on graph based structures and combine
them with the approaches applying word embeddings.
At the same time, we want our methods to benefit
from the existing data (e.g. corpora, pre-trained em-
beddings, Wiktionary).

3.2. Word Vector Representations for Taxonomies

Approaches using word vector representations are
the most popular choice for all tasks related to
taxonomies. When solving the Hypernym Discovery
problem in SemEval-2018 Task 9 [27] most of par-
ticipants use word embeddings. For instance, Bernier-
Colborne and Barriere [36] predict the likelihood of
the relationship between an input word and a candi-
date using word2vec embeddings. Berend et al. [37]
use Word2vec vectors as features of a logistic regres-
sion classifier. Maldonado and Klubicka [38] simply
consider top-10 closest associates from the Skip-gram
word2vec model as hypernym candidates. Pre-trained
GloVe embeddings [39] are also used to initialize em-
beddings for an LSTM-based Hypernymy Detection
model [40].

Participants also solve the SemEval-2016 Task 13
on taxonomy induction with word embeddings [41]:
they compute the vector offset as the average offset of
all the pairs generated and exploit it to predict hyper-
nyms for the new data. Afterwards, in [42] the authors
apply word2vec embeddings similarity to improve the
approaches of the SemEval-2016 Task 13 participants.

The vast majority of participants of SemEval-2016
task 14 [3] and RUSSE’2020 [9] also apply word em-
beddings to find the correct hypernyms in the exist-
ing taxonomy. For instance, the participants compute
a definition vector for the input word by comparing
it with the definition vectors of the candidates from
the wordnet using cosine similarity [4]. Another op-
tion is to train word2vec embeddings from scratch and
cast the task as a classification problem [32]. Some
participants compare the approach based on XLM-
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R model [43] with the word2vec “hypernyms of co-
hyponyms” method [34]. It considers nearest neigh-
bours as co-hyponyms and takes their hypernyms as
candidate synsets.

Summing up, the usage of distributed word vector
representations is a simple yet efficient approach to
the taxonomy-related tasks and should be considered a
strong baseline [9, 27].

3.3. Meta-Embedding Approaches to Word
Representation

Vector representations can be learned on various
datasets and using various models. It has been shown
that combining word embeddings is beneficial for NLP
tasks, e.g. dependency parsing [44], and in medical do-
main [45].

Coates et al. [46] show that simple vector combin-
ing approaches, such as concatenation or averaging,
can significantly improve the overall performance for
several tasks. For instance, singular value decomposi-
tion (SVD) demonstrates good results with the ability
to control the final dimension of vectors [47]. Autoen-
coders [48] further promote the idea of creating meta-
embeddings. The authors propose several algorithms
for combining various word vectors into one vector
by encoding initial vectors into some meta-embedding
space and then decoding backwards.

As for the CAEME approach, all word vectors
are encoded into meta-vectors and then concatenated.
Then, the decoding step uses a concatenated repre-
sentation to predict the original vector representations.
The AAEME approach is similar to CAEME, except
that each vector is mapped to a fixed-size vector and all
encoded representations are averaged, but not concate-
nated. An obvious advantage of this approach is the
ability to control the dimension of meta-embeddings.

For any AEME approach, different loss functions
can be used at the decoding stage: MSE loss, KL-
divergence loss, cosine distance loss and also their
combinations. In [49] the authors investigated the per-
formance of the autoencoders depending on the loss
function. They discover that there is no evident win-
ner across tasks and that different loss functions are
defined be different tasks.

Meta-embeddings are already used in such machine
learning tasks as dependency parsing [44], classifica-
tion in healthcare [45], named-entity recognition [49,
50], sentiment analysis [49], word similarity and anal-
ogy tasks [46–48]. To the best of our knowledge, meta-
embeddings have not been applied to the taxonomy en-

richment task, especially for the fusion of texts and
graph embeddings.

3.4. Graph-based Representations for Taxonomies

Taxonomies can be represented as graphs and there
exist various approaches to learn graph-based repre-
sentations. They are thoroughly compared in [51] on
the link prediction task, which is closely related to Tax-
onomy Enrichment. The paper also demonstrates that
the combination of text and graph embeddings gives a
boost on the link prediction task. Most of those meth-
ods listed in [51] have also been tested on tasks related
to the taxonomy enrichment.

For instance, node2vec embeddings [52] are used
for taxonomy induction among other network embed-
dings [53]. In [42], the authors perform the same task.
They use hyperbolic Poincaré embeddings to enhance
automatically created taxonomies. The SemEval-2016
subtask of reattaching query words to the taxon-
omy is quite similar to taxonomy enrichment which
we perform. However, the datasets of the SemEval-
2016 Task 13 are restricted to specific domains,
which leaves an open question of the efficiency of
Poincaré embeddings for the general domain and
larger datasets. Moreover, [42] use Hearst Patterns to
discover hyponym-hypernym relationships. This tech-
nique operates on words, and cannot be transferred to
word-synset relations without extra manipulation.

As for the Knowledge Graph Construction task,
which is a more general task in relation to the Tax-
onomy Induction, the vast majority of approaches
also use word embeddings as node representations.
Several approaches like [54] and apply ELMO em-
beddings [55] to predict entities and their relations
for the knowledge graph. Other approaches [56] uti-
lize a combination of ELMO, Poincaré and node2vec
embeddings to enhance knowledge graph build upon
Wikipedia.

Graph convolutional networks (GCNs) [57] as well
as graph autoencoders [58] are mostly applied to the
link prediction task on large knowledge bases. For ex-
ample, in [59] the authors present an expanded review
of the field and compare a wide variety of existing ap-
proaches. Graph embeddings are also often used for
other taxonomy-related tasks, e.g. entity linking [60].
As for the taxonomy enrichment task, we are only
aware of a recent approach TaxoExpan [61] which ap-
plies position-enhanced graph neural networks (GCN
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[62] and GAT [63]) that we also evaluate on our
datasets3.

Thus, to the best of our knowledge, our work is
the first computational study of Taxonomy enrichment
task which aggregates and considers different exist-
ing and new approaches for taxonomy enrichment. We
compare graph- and word-based representations com-
puted from the synsets and hypo-hypernym relations
for hypernym prediction demonstrating state-of-the-art
results.

4. Diachronic WordNet Datasets

The important part of our study is the observation
that one can learn from the history of the development
of lexical resources though time. More specifically, we
make use of the various historic snapshots (versions)
of WordNet lexical graphs and setup a task of their au-
tomatic completion assuming the manual update of the
ground truth. This diachronic analysis – similar to di-
achronic lexical analysis of word meanings – is used
to build two datasets in our study: one for English, an-
other one for Russian based respectively on Princeton
WordNet [64] and RuWordNet taxonomies. It is im-
portant to mention that by using the word “diachronic”
we do not imply lexical diachrony, e.g., semantic shifts
of words over time [65], but the temporal extension of
Wordnet stored in its versions. Each dataset consists of
a taxonomy and a set of novel words to be added to
this resource. The statistics are provided in Table 1.

Table 1
Statistics of two diachronic WordNet datasets used in this study.

Dataset Nouns Verbs

WordNet1.6 - WordNet3.0 17 043 755
WordNet1.7 - WordNet3.0 6 161 362
WordNet2.0 - WordNet3.0 2 620 193

RuWordNet1.0 - RuWordNet2.0 14 660 2 154
RUSSE’2020 2 288 525

3The results achieved on our datasets are significantly lower than
the baseline, probably because of the incorrect model launching.

4.1. English Dataset

To compile dataset, we choose two versions of
WordNet and then select words which appear only in
a newer version. For each word, we get its hypernyms
from the newer WordNet version and consider them as
gold standard hypernyms. We add words to the dataset
if only their hypernyms appear in both versions. We do
not consider adjectives and adverbs, because they of-
ten introduce abstract concepts and are difficult to in-
terpret by context. Besides, the taxonomies for adjec-
tives and adverbs are worse connected than those for
nouns and verbs making the task more difficult.

In order to find the most suitable pairs of releases,
we compute WordNet statistics (see Table 2). New
words demonstrate the difference between the current
and the previous WordNet version. For example, it
shows that the dataset generated by “subtraction” of
WordNet 2.1 from WordNet 3.0 would be too small,
they differ by 678 nouns and 33 verbs. Therefore, we
create several datasets by skipping one or more Word-
Net versions. The statistics for the datasets we select
for our study are provided in Table 1.

As gold standard hypernyms, we use not only the
immediate hypernyms of each lemma (initial form of a
word — infinitive for a verb, single number and nom-
inative case for a noun, etc.) but also the second-order
hypernyms: hypernyms of the hypernyms. We include
them in order to make the evaluation less restricted.
According to our empirical observations, the task of
automatically identifying the exact hypernym might be
too challenging, and finding the “region” where a word
belongs (“parents” and “grandparents”) can already be
considered a success.

This method of dataset construction does not use
any language-specific or database-specific features, so
it could be transferred to other wordnets or taxonomies
with timestamped releases.

All datasets4 created for this research and the code5

for their construction are publicly available.

4.2. Russian Datasets

In order to create an analogous version to English
dataset for Russian, we use the RuWordNet taxon-
omy [31]. RuWordNet comprises synsets — sets of
synonyms expressing a particular concept. A synset
consists of one or more senses — words or multi-word

4https://zenodo.org/record/4279821
5https://github.com/skoltech-nlp/diachronic-wordnets

https://zenodo.org/record/4279821
https://github.com/skoltech-nlp/diachronic-wordnets
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Table 2
Statistics of the English WordNet taxonomies used in this study.

Taxonomy
Synsets Lemmas New words

Nouns Verbs Nouns Verbs Nouns Verbs

WordNet 1.6 66 025 12 127 94 474 10 319 - -
WordNet 1.7 75 804 13 214 109 195 11 088 11 551 401
WordNet 2.0 79 689 13 508 114 648 11 306 4 036 182
WordNet 2.1 81 426 13 650 117 097 11 488 2 023 158
WordNet 3.0 82 115 13 767 117 798 11 529 678 33

Table 3
Examples of Russian nouns with translation mapped to English WordNet.

Word Translation RuWordNet hypernyms RuWordNet hypernym names WordNet hypernyms

абсентеизм absenteeism
["147309-n",
"117765-n",
"117017-n"]

[’неучастие, отказ от участия’,
’уклониться (отказаться)’,
’отказаться, не согласиться’]

["non-engagement.n.01",
"evasion.n.03",

"rejection.n.01"]

кибертерроризм cyber terrorism
["7334-n",
"4590-n",
"2400-n"]

[’преступление против
общественной безопасности’,
’компьютерное преступление’,

’терроризм’]

[null,
"cybercrime.n.01",
"terrorism.n.01"]

метропоезд subway train
["141975-n",

"7133-n"]

[’электрическое
транспортное средство’,

’электропоезд’]

[null,
null]

constructions in the initial form. Therefore, we use the
current version of RuWordNet and the extended ver-
sion of RuWordNet which has not been published yet
to compile the dataset (cf. Table 1).

The RUSSE’2020 dataset was created for the Dia-
logue Evaluation [9] and can be viewed as a restricted
subset of the Russian dataset. In the RUSSE’2020 the
following categories of words were excluded:

– all three-symbol words and the majority of four-
symbol words;

– diminutive word forms and feminine gender-
specific job titles;

– words which are derived from words which are
included in the published RuWordNet;

– words denoting inhabitants of cities and coun-
tries;

– geographic and personal names;
– compound words that contain their hypernym as

a substring.

4.3. WordNet ILI mapping (ru-en)

In order to connect wordnets in different languages
the Inter-Lingual Index (ILI) is used [66]. This map-

ping is designed to make possible coordination be-
tween wordnet projects. For the Russian test sets we
also provide mapping from RuWordNet to WordNet6.
For each hypernym synset of each query word we
present the corresponding WordNet synset index. Ta-
ble 3 demonstrates several examples of this kind of
mapping. As we can see, datasets for the Russian
nouns and verbs are extended with additional column
called “WordNet synsets”, where the corresponding
WordNet3.0 synsets are listed in accordance with the
Russian synset list.

However, not all synsets have an equivalent in the
other language, as there exist untranslatable concepts
and lacunae. Therefore, we present in the Table 4 the
coverage of the WordNet synsets for the hypernyms of
query words from the test set. This mapping can be
further used for multilingual experiments.

6https://doi.org/10.5281/zenodo.4969267

https://doi.org/10.5281/zenodo.4969267
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Table 4
Coverage of the WordNet synsets for the hypernyms in the Russian
test sets.

Input type Total Have ILI mapping

Non-restricted nouns

All synsets 41,694 28,425
Unique synsets 4,777 2,791
Query words 17,475 15,251

Restricted (private) nouns

All synsets 4,456 3,087
Unique synsets 1,376 885
Query words 1,920 1,720

non-restricted verbs

All synsets 6,783 4,860
Unique synsets 1,473 931
Query words 2,872 2,606

restricted (private) verbs

All synsets 1,110 821
Unique synsets 611 419
Query words 477 440

4.4. Evaluation Metric

The goal of diachronic taxonomy enrichment is to
build a newer version of a wordnet by attaching the
new given terms to the older wordnet version. We cast
this task as a soft ranking problem and use Mean Aver-
age Precision (MAP) score for the quality assessment:

MAP = 1
N

∑N
i=1 APi,

APi =
1
M

∑n
i preci × I[yi = 1],

(1)

where N and M are the number of predicted and
ground truth values, respectively, preci is the fraction
of ground truth values in the predictions from 1 to i,
yi is the label of the i-th answer in the ranked list of
predictions, and I is the indicator function.

This metric is widely acknowledged in the Hyper-
nym Discovery shared tasks, where systems are also
evaluated over the top candidate hypernyms [27]. The
MAP score takes into account the whole range of pos-
sible hypernyms and their rank in the candidate list.

However, the design of our dataset disagrees with
MAP metric. As we described in Section 4, the gold-
standard hypernym list is extended with second-order

hypernyms (parents of parents). This extension can
distort MAP. If we consider all gold standard answers
as compulsory for the maximum score, it means that
we demand models to find both direct and second-
order hypernyms. This disagrees with the original mo-
tivation of including second-order hypernyms to the
gold standard — it was intended to make the task eas-
ier by allowing a model to guess a direct or a second-
order hypernym.

On the other hand, if we decide that guessing any
synset from the gold standard yields the maximum
MAP score, we will not be able to provide an adequate
evaluation for words with multiple direct hypernyms.
There exist two cases thereof:

1. the target word has two or more hypernyms which
are co-hyponyms or one is a hypernym of the
other — this word has a single sense, but the an-
notator decided that multiple related hypernyms
are needed to reflect all shades of the meaning,

2. the target word has two or more hypernyms which
are not directly connected in the taxonomy and
neither are their hypernyms. This happens if:

(a) the word’s sense is a composition of
senses of its hypernyms, e.g. “impeccabil-
ity” possesses two components of meaning:
(“correctness”, “propriety”) and (“moral-
ity”, “righteousness”);

(b) the word is polysemous and different hy-
pernyms reflect different senses, e.g. “pop-
up” is a book with three-dimensional pages
(“book, publication”) and a baseball term
(“fly, hit”).

While the case 2a corresponds to a monosemous
word and the case 2b indicates polysemy, this differ-
ence does not affect the evaluation process. We pro-
pose that in both these cases in order to get the max-
imum MAP score a model should capture all the un-
related hypernyms which correspond to different com-
ponents of sense. At the same time, we should bear
in mind that guessing a direct hypernym or a second-
order hypernym are equally good options. Therefore,
following [9], we evaluate our models with modi-
fied MAP. It transforms a list of gold standard hyper-
nyms into a list of connected components. Each of
these components includes hypernyms (both direct and
second-order) which form a connected component in
a taxonomy graph. (According to graph theory, con-
nected component is a subgraph, in which there is a
path between any two nodes.) Thus, in the case 1 we
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will have a single connected component, and a model
should guess any hypernym from it to get the maxi-
mum MAP score. In the cases 2a and 2b we will have
multiple components, and a model should guess any
hypernym from each of the components.

5. Base Methods

Here we first describe our baseline model which
is a method of synset ranking based on distributional
embeddings and hand-crafted features (the method
was proposed as a baseline for RUSSE-2020 shared
task [6]). We then propose extending it with new fea-
tures extracted from Wiktionary and use the alternative
sources of information about words (e.g. graph repre-
sentations) and their combinations.

5.1. Baseline

We consider the approach by Nikishina et al. [6]
as our baseline. There, we first create a vector repre-
sentation for each synset in the taxonomy by averag-
ing vectors (pretrained embeddings) of all words from
this synset. Then, we retrieve top 10 synsets whose
vectors are the closest to that of the query word (we
refer to these synsets as synset associates). For each
of these associates, we extract their immediate hyper-
nyms and hypernyms of all hypernyms (second-order
hypernyms). This list of the first- and second-order hy-
pernyms forms our candidate set. We need to rank the
candidates by their relevance for the query word. Note
that the lists of candidates for different associates can
have intersections. When forming the overall candi-
date set, we make sure that each candidate occurs in it
only once.

The intuition behind the method is the following.
We propose that if a synset of a taxonomy is a parent
of a word which is similar to our query word, it can
also be a parent of this query word.

To rank the candidate set of synsets we train a Linear
Regression model with L2-regularisation on the train-
ing dataset formed of the words and synsets of Word-
Net. Candidate hypernyms are ranked by their model
output score. We limit the output to the k = 10 best
candidates.

We rank the candidate set using the following fea-
tures:

– n × sim(vi, vh j), where vx is a vector representa-
tion of a word or a synset x, h j is a hypernym, n

is the number of occurrences of this hypernym in
the merged list, sim(vi, vh j) is the cosine similar-
ity of the vector of the input word i and hypernym
vector h j;

– the candidate presence in the Wiktionary hyper-
nyms list for the input word (binary feature);

– the candidate presence in the Wiktionary syn-
onyms list (binary feature);

– the candidate presence in the Wiktionary defini-
tion (binary feature);

– the average cosine similarity between the candi-
date and the Wiktionary hypernyms of the input
word.

5.2. DWRank

We present a new method of taxonomy enrichment
— Distributional Wiktionary-based synset Ranking
(DWRank). It combines distributional features with
features from Wiktionary. DWRank builds up on the
baseline described in Section 5.1. We extend the base-
line Logistic Regression model with the new features
which mainly account for the number of occurrences
of a synset in the candidate lists of different synset as-
sociates (nearest neighbours) of the query word. We
introduce the following new features:

– the number of occurrences (n) of the synset in the
merged candidate list and the quantity log2(2+n)
which serves for smoothing,

– the minimum, average, and maximum proximity
level of the synset in the merged candidate list:

* the level is 0 if the synset was added based
on similarity to the query word,

* the level of 1 is for the immedidate hyper-
nyms of the query word,

* the level of 2 is for the hypernyms of the
hypernyms,

– the minimum, average, and maximum similarities
of the query word to all words of the synset,

– the features based on hyponyms of a candidate
synset (“children-of-parents”):

* we extract all hyponyms (“children”) of the
candidate synset,

* for each word/phrase in each hyponym
synset we compute their similarity to the
query word,

* we compute the minimum, average, and
maximum similarity for each hyponym
synset,
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* we form three vectors: a vector of min-
imums of similarities, average similari-
ties, and maximum similarities of hyponym
synsets,

* for each of these vectors we compute mini-
mum, average, and maximum. We use these
resulting 9 numbers as features.

These features account for different aspects of
similarity of the candidate’s children to the query
word and help defining if these children can be
the query word’s co-hyponyms (“siblings”).

Moreover, in this approach we use cross-validation
and feature scaling when training the Logistic Regres-
sion model.

This methods could be easily extended to other lan-
guages that possess a taxonomy, a wiki-based open
content dictionary (Wiktionary) and text embeddings
like fastText or/and word2vec and GloVe.

5.3. Web-based Synset Ranking (WBSR)

In this section, we describe WBSR (Web-based
Synset Ranking) a method which leverages the power
of the existing general-purpose services. It makes use
of the two famous search engines: Google (for both
English and Russian datasets) and Yandex7 (for Rus-
sian only). According to our hypothesis, the search re-
sults for a word are likely to contain its hypernyms
or co-hyponyms as they are often used to define a
word via generalisation or by providing synonyms (co-
hyponyms). For instance, if we do not know what “ab-
dominoplasty” is, searching for it with a search engine
can yield its definition “a cosmetic surgery procedure”.

Another source that we could probably benefit from
is another taxonomy, preferably larger than the one
we work with. However, there might be no other tax-
onomies available in the same language. Therefore, in
this case we can resort to Machine Translation and au-
tomatically translate query words into a rich-resource
language (e.g. English) in order to use an existing tax-
onomy (e.g. English Princeton WordNet). In this study
we use Yandex Machine Translation system8 to trans-
late query words into English and then translate hyper-
nyms (if they are found) back into Russian.

The main drawback of using external sources such
as search engines and machine translation systems is
their weak reproducibility. The search results are de-

7https://yandex.com
8https://translate.yandex.ru/

pendent on the search history, so reproducing the ex-
periment on a different account or after a relatively
long period of time is problematic. However, since the
method greatly improves the performance even with
trivial handling of the collected data, we use it despite
its drawback. To make our results reproducible, we re-
lease all data from the external sources used in our ap-
proach.9

Similarly to the approaches described above, here
we also make use of Wiktionary and fastText embed-
dings cosine similarity. However, we treat synsets and
words/phrases that they consist of in a different way.
In the previously described approaches we computed
embeddings for multiword phrases by averaging word
embeddings of individual words in them. Here we treat
them as sentences — we compute their embeddings us-
ing the get_sentence_vector method from fast-
Text Python library. There, fastText vectors are divided
by their norms and then averaged, so that only vectors
with the positive L2-norm value are considered. Sec-
ondly, we do not combine the word/phrase vectors into
a synset vector but operate with the word/phrase em-
beddings directly.

Similarly to DWRank, the algorithm consists of two
steps: candidate generation and candidate ranking. Our
candidate list is formed of the following synsets:

– synsets which contain words/phrases from the list
of top-10 nearest neighbours of the query word;

– hypernyms and second-order hypernyms of those
synsets;

– Wiktionary-based candidates:

* synsets that contain words/phrases listed in
Wiktionary as the hypernyms of the query
word;

* hypernym synsets of these synsets;

– cross-lingual candidates (for the Russian lan-
guage only):

* synsets that contain words/phrases listed in
the English WordNet as the hypernyms of
the query word;

* hypernym synsets of these synsets.

Analogously to DWRank, we then rank all candi-
dates by a logistic regression model which uses the fol-
lowing features:

– the candidate synset contains a word/phrase from
the list of query word’s nearest neighbours;

9https://doi.org/10.5281/zenodo.4540717

https://yandex.com
https://translate.yandex.ru/
https://doi.org/10.5281/zenodo.4540717
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– the candidate synset is a hypernym of one of the
nearest neighbours;

– the candidate is a second-order hypernym of one
of the nearest neighbours;

– the candidate synset contains a hypernym of the
query word from Wiktionary;

– the candidate synset is a hypernym of the synset
which contains a hypernym of the query word
from Wiktionary;

– the candidate synset contains a word which is
present in the definition of the query word from
Wiktionary;

– the candidate synset is present in the list of En-
glish WordNet synset candidates (for the Russian
language only);

– the candidate synset is present in the list of hyper-
nyms of the WordNet candidates (for the Russian
language only);

– the candidate synset contains words which occur
on the Google results page;

– the candidate synset contains words which occur
on the Yandex results page (for the Russian lan-
guage only).

The training set for the logistic regression model is
formed from a wordnet in the relevant language as fol-
lows. For each query word in the list of query words
we first find the most similar lemma which is con-
tained in the wordnet. We know hypernyms for these
lemmas and use them to generate the training set. We
generate the candidate list as described before. First-
and second-order hypernyms in this candidate list are
used as positive examples for the corresponding lem-
mas, and synsets from the candidate list which are not
hypernyms are considered negative examples.

This approach participated in the RUSSE’2020 Tax-
onomy Enrichment task for the Russian Language.
The method achieved the best result on the nouns
track. Therefore, we consider it as the-state-of-the-art
method for Russian.

5.4. WordNet Path Prediction

A completely different approach to make use of fast-
Text embeddings is presented in the work of Cho et
al. [67]. The authors experiment with encoder-decoder
models in order to solve the task of the direct hy-
pernym prediction. They use a standard LSTM-based
sequence-to-sequence model [68] with Luong atten-
tion [69]. First, they average fastText embeddings for
the input word or phrase and put it through the encoder.

The decoder sequentially generates a chain of synsets
from the encoder hidden state, conditioned on the pre-
viously generated ones. The authors consider two dif-
ferent setups:

– hypo2path — given the input word, generate a
sequence of synsets starting from the root synset
and going down the taxonomy to the closest hy-
pernym;

– hypo2path reverse — given the input word, gen-
erate a sequence of synsets starting from the clos-
est hypernym up to the root entity.

To be able to apply this sequence-to-sequence archi-
tecture to our data, we build new datasets similar to
the ones described in [67]. We generate a path from
the WordNet starting from the root node to the target
synset or word. Analogously to the original work, we
include multiple paths from the root to the parents of
the query word. We filter the validation set to only in-
clude queries that do not occur anywhere in the full
taxonomy paths of the training data. To sort candidates
generated by the decoder, we enumerate the generated
hypo2path sequence from the right to the left or the
hypo2path reverse from the left to the right and get the
first 10 synsets.

Additionally, we extend this approach by replacing
the LSTM+attention architecture with the Transformer
architecture [70]. During training we provide an em-
bedding of a synset as input to the Transformer and ex-
pect the model to generate a sequence of synsets start-
ing from the hypernym of the input synset. During in-
ference we provide embedding of query words as in-
put expect the model to output sequences of synsets
starting with the direct hypernyms.

5.5. Word Representations for DWRank

We test our baseline approach and DWRank
with different types of embeddings: fastText [71],
word2vec [72] embeddings for English and Russian
datasets and also GloVe embeddings [39] for the En-
glish dataset.

We use the fastText embeddings from the official
website10 for both English and Russian, trained on
Common Crawl from 2019 and Wikipedia CC in-
cluding lexicon from the previous periods as well.
For word2vec we use models from [73, 74] for both

10https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
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English11 and Russian.12 We lemmatise words and
synsets for both languages with the same UDPipe [75]
model which was used while training the representa-
tions. For the out-of-vocabulary (OOV) words we find
all words in the vocabulary with the longest prefix
matching this word and average their embeddings like
in [33]. As for the GloVe embeddings, we also use
them from the official website13 trained on Common
Crawl, the vocabulary size is 840 billion tokens.

6. DWRank-Graph

The DWRank method extracts a set of candidate
synsets based on the similarities of word vectors. So
far we used only distributional word vectors (fastText,
GloVe, etc.) to represent words. On the other hand,
graph-based representations can contain the taxonomic
information which is absent in distributional embed-
dings [51].

Here, we present DWRank-Graph. This is the
same DWRank method where the distributional em-
beddings are replaced with graph representations. The
score prediction model and the features it uses do not
change. Below we describe the graph representations
and their combinations we applied in DWRank-graph.

6.1. Poincaré Embeddings

Poincaré embeddings is an approach for “learn-
ing hierarchical representations of symbolic data by
embedding them into hyperbolic space — or more
precisely into an ”n-dimensional Poincaré ball” [76].
Poincaré models are trained on hierarchical structures
and simultaneously capture hierarchy and similarity
due to the underlying hyperbolic geometry. According
to the authors, hyperbolic embeddings are more effi-
cient on the hierarchically structured data and may out-
perform Euclidean embeddings in several tasks, e.g, in
Taxonomy Induction [42].

Therefore, we use Poincaré embeddings of our
wordnets for the taxonomy enrichment task. We train
Poincaré ball model for our wordnets using the default
parameters and the dimensionality of 10, which yields
the best results on the link prediction task [76].

However, applying these embeddings to the task is
not straightforward, because Poincaré model’s vocabu-

11http://vectors.nlpl.eu/repository/20/29.zip
12http://vectors.nlpl.eu/repository/20/185.zip
13https://nlp.stanford.edu/projects/glove/

lary is non-extensible. It means that new words that we
need to attach to the existing taxonomy will not have
any Poincaré embeddings at all and we cannot make
use of the embeddings similarity. To overcome this
limitation, we compute top-5 fastText nearest synsets
(analogously to the procedure described in Section 5.1)
and then aggregate embeddings in hyperbolic space us-
ing Einstein midpoint, following [77]. The resulting
vector is considered as an embedding of the input word
in the Poincaré space.

Then, we use vectors from this vector space to gen-
erate candidates for the DWRank approach. As the
model we present in Section 5.2 does not depend on
the types of input embeddings, we are able to provide
Poincaré embeddings as input.

6.2. Node2vec Embeddings

The hierarchical structure of the taxonomy is a
graph structure, and we may also consider taxonomies
as graphs and apply random walk approaches to com-
pute embeddings for the synsets. For this purpose we
apply node2vec [52] approach which represents a “ran-
dom walk of a fixed length l” with “two parameters p
and q which guide the walk in breadth or in depth”.
Node2vec randomly samples sequences of nodes and
then applies the skip-gram model [78] to train their
vector representations. We train node2vec representa-
tions of all synsets in our wordnets with the following
parameters: dimensions = 300, walk_length = 30,
num_walks = 200. The other parameters are taken
from the original implementation.

However, analogously to Poincaré vector space,
node2vec model has no techniques for representing
out-of-vocabulary words. Thus, it is unable to map new
words to the vector space. To overcome this limita-
tion, we apply the same technique of averaging top-5
nearest neighbours from fastText and considering their
mean vector as the new word embedding and search
for the most similar synsets.

6.3. Graph Neural Networks

The models described above have a major shortcom-
ing: the resulting vectors for the input words heavily
depend on their representations in the fastText model.
This can lead to the incorrect results if the word’s near-
est neighbour list is noisy and does not reflect its mean-
ing. In this case the noise will propagate through the
graph embedding (Poincaré or node2vec) model and

http://vectors.nlpl.eu/repository/20/29.zip
http://vectors.nlpl.eu/repository/20/185.zip
https://nlp.stanford.edu/projects/glove/
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result in inaccurate output even if the graph embedding
model is of high quality.

Therefore, we test different graph neural network
(GNN) architectures — Graph Convolutional Net-
work [57], Graph Attention Network [63] and Graph-
SAGE [79] (SAmple and aggreGatE) which make use
of both fastText embeddings and the graph structure of
the taxonomy.

All the above mentioned models work similarly. Ac-
cording to [51], “GCN works similarly to the fully-
connected layers for neural networks. It multiplies
weight matrices with the original features but masking
them with an adjacency matrix. Such a method allows
to account not only node representation, but also rep-
resentations of neighbours and two-hop neighbours.”
The GraphSAGE model addresses the problem of un-
seen nodes representation by training a set of aggrega-
tor functions that learn to aggregate feature informa-
tion from a node’s local neighborhood. GCN, on the
contrary, learns a distinct embedding vector for each
node. In GAT, the convolution operation from GCN is
replaced with the attention mechanism. It uses the self-
attention mechanism of Transformers [80] to aggregate
the information from the one-hop neighbourhood.

FastText embeddings are used as input node features
for all models, which is definitely an advantage of the
model over Poincaré and node2vec, as they do not use
word embeddings for training. Even though new words
are not connected to the taxonomy, it is still possible
to compute their embeddings according to their input
node features.

We get the vector representations of query words
from one of the pre-trained GNN models and then use
them as the input to DWRank. Even though all meth-
ods work similarly, they demonstrate different perfor-
mance on different datasets.

6.4. Text-Associated Deep Walk

Text-Associated Deep Walk (TADW) [81] is another
approach that incorporates text and graph information
into one vector representation. The method is based
on the DeepWalk algorithm [82] which learns feature
representations by simulating uniform random walks.
To be specific, the sampling strategy in DeepWalk can
be seen as a special case of node2vec with p = 1 and
q = 1.

The authors prove that the DeepWalk approach is
equivalent to matrix factorization. They incorporate
text features of vertices into network representation
learning within the framework of matrix factorization.

First, they define matrix M ∈ R|V|×|V| where each en-
try Mi j is the logarithm of the average probability that
vertex vi randomly walks to vertex v j in a fixed number
of steps. In comparison to DeepWalk, where the goal
is to factorize matrix M into the product of two low-
dimensional matrices W ∈ Rk×|V| and H ∈ Rk×|V|

(k � |V|), TADW aims to factorize matrix M into the
product of three matrices: W ∈ Rk×|V|, H ∈ Rk× ft and
text features T ∈ R ft×|V|. As text features, in this work
we apply fastText embeddings.

After having learnt the factorisation of matrix M, we
use rows of matrix W as node (synset) embeddings in
DWRank.

6.5. High-Order Proximity preserved Embeddings

High-Order Proximity preserved Embeddings
(HOPE) [83] is yet another approach that embeds a
graph into a vector space preserving information about
graph properties and structure. Unfortunately, most
structures cannot preserve the asymmetric transitivity,
which is a critical property of directed graphs. To solve
the problem, the authors employ matrix factorization
to directly reconstruct asymmetric distance measures
like Katz index, Adamic-Adar or common neighbors.
This approach is scalable — it preserves high-order
proximities of large scale graphs, and capable of cap-
turing the asymmetric transitivity. HOPE outperforms
state-of-the-art algorithms in tasks of reconstruction,
link prediction and vertex recommendation.

As for our Taxonomy Enrichment task, we also ap-
ply HOPE to generate graph embeddings to be used as
input in the DWRank model. The main difference with
the other embeddings is that HOPE does not incorpo-
rate textual information from the nodes.

7. DWRank-Meta

In DWRank we employed only distributional infor-
mation, i.e. pre-trained word embeddings, whereas in
DWRank-Graph we represented words using the in-
formation from the graph structure of the taxonomy
and usually ignoring their distributional properties.
Meanwhile, taxonomy enrichment models may ben-
efit from combining these two types of information.
Therefore, we present DWRank-Meta — an exten-
sion of DWRank which combines multiple types of in-
put word representations.

As in DWRank-Graph, the process of candidates
selection, the feature set and the algorithm of synset



I. Nikishina et al. / Taxonomy Enrichment with Text and Graph Vector Representations 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ranking stay intact. Here we change the input represen-
tations of words and synsets.

7.1. Base Meta-Embeddings

The easiest way of combining embeddings of dif-
ferent types is to concatenate them and use the con-
catenated vector as an input. We refer to this method
as Concat and combine different subsets of dis-
tributional (fastText, word2vec, GloVe) and graph-
based (Poincaré, node2vec, GCN, GAT, GraphSAGE,
TADW, HOPE) embeddings. In addition to that, we
perform Singular value decomposition (SVD) over this
concatenation as proposed in [47]. This approach is re-
ferred to as SVD.

7.2. Autoencoded Meta-Embeddings

We propose using two variants of autoencoders for
the generation of meta-embeddings: Concatenated Au-
toencoded Meta-Embeddings (CAEME) and Averaged
Autoencoded Meta-Embeddings (AAEME) [48]. They
have shown good results on the task of evaluating lex-
ical similarity. However, they have never been applied
to taxonomy enrichment.

We generate meta-embeddings as follows. Let us
consider an embedding model s(w). For each of such
embedding models we train an autoencoder consisting
of an encoder and a decoder:

E(s(w)) = h(w),

D(h(w)) = ŝ(w),

LED = dist(s(w), ŝ(w)),

(2)

where E and D are the encoder and the decoder,
and L is the loss used for training of the autoencoder.
The loss is implemented as the distance (dist) between
the original and the reconstructed embeddings. The
dist can be any distance or similarity measure such as
MSE, KL-divergence, or cosine distance. In our pre-
liminary study, the cosine distance showed the best re-
sults, so we use it in our experiments.

Let us consider two embedding models s1(w) and
s2(w). In such a case, the input to each decoder is
not the result of the corresponding encoder, but meta-
embeddings, which depends on the both encoders.
Depending on the approach, meta-embeddings can
be built in different ways, we construct the meta-

embeddings as follows. In case of CAEME, we take
an L2-normalised concatenation of the two source em-
beddings encoded with respective encoders E1(s1(w))
and E2(s2(w)):

m(w) =
E1(s1(w))⊕ E2(s2(w))
||E1(s1(w))⊕ E2(s2(w)||2

, (3)

where ⊕ is the concatenation operation.
The drawback of this model is the growing dimen-

sionality of meta-embeddings for cases where we com-
bine multiple source embeddings. To fight that, we
can replace the concatenation operation with averag-
ing, yielding AAEME. It computes meta-embedding
of a word w from its two source embeddings s1(w) and
s2(w) as the L2-normalised sum of internal represen-
tations E1(s1(w)) and E2(s2(w)):

m(w) =
E1(s1(w)) + E2(s2(w))
||E1(s1(w)) + E2(s2(w))||2

. (4)

In CAEME, the dimensionality of the meta-
embedding space is the sum of the dimensions of the
source embeddings, whereas in AAEME it stays the
same. The AAEME encoder can be seen as a spe-
cial case of the CAEME encoder where the meta-
embedding is computed by averaging the two encoded
sources in equation 3 instead of their concatenation.

7.3. Training of Autoencoders

We can impose additional restrictions on *AEME
models during training. One of such restrictions is the
use of triplet loss. We restrict a word to be closer to
the words that are semantically related to it according
to the taxonomy than to a randomly chosen word with
some margin:

L(wa,wp,wn) = max(||m(wa)− m(wp))||−
||m(wa)− m(wn))||+ margin, 0), (5)

where ||.|| is a distance function, wa is the target
word, wp and wn are positive and negative words, re-
spectively.

The algorithm of calculating triplet loss is as fol-
lows:

1. for each word presented in the taxonomy, we
compile a list of semantically related words
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which includes synonyms, hyponyms and hyper-
nyms;

2. at each epoch, we randomly select K positive
words from this related words set and form a set
of K negative words by selecting them randomly
from the vocabulary;

3. if the word is not presented in the taxonomy, then
we cannot form a list of related words for it. In
this case, we generate positive vectors for it by
adding random noise to its vector;

4. next, we calculate the triplet margin loss by com-
bining the triplet loss with the original loss as
α ∗ loss + (1− α) ∗ triplet_loss.

We use the following parameters for the triplet loss:
K = 5, margin = 0.1, alpha = 0.005. These parame-
ters were selected via grid search with AAEME algo-
rithm on the English 1.7 dataset.

8. Experiments

In this section, we report and discuss the perfor-
mance of our models in the taxonomy enrichment task.
We experiment with our DWRank approach and its
modifications DWRank-Graph and DWRank-Meta. In
addition to that, we compare them with the baseline in-
troduced in RUSSE’2020 shared task and with a num-
ber of state-of-the-art methods. We conduct the exper-
iments with English and Russian wordnets.

8.1. Experimental Setup

For each result we add the standard deviation val-
ues. We calculate them as follows. We randomly sam-
ple 80% of the test data and calculate the MAP scores
on that part of the test set. We repeat the same proce-
dure 30 times and then calculate the standard deviation
on those 30 MAP values.

The MAP metric should be interpreted as follows:
the higher the score, the better the results. For in-
stance, MAP@k = 1.0 means that all of the N cor-
rect hypernyms are present in the first top-N posi-
tions in the ranked list of candidates. Moreover, with
MAP@k = 1.0 the first candidate is always correct.
MAP@k > 0.5 means that at least one of the correct
hypernyms is present in the two first positions (top-2)
in the ranked lists of candidates. MAP@k > 0.3 means
that at least one of the correct hypernyms is present in
the first three positions (top-3) in the ranked lists of
candidates.

We show the performance of different methods on
the nouns attribution task for English (nouns 1.6) in
Figure 2 and for Russian (non-restricted nouns) in Fig-
ure 3. The X axis shows the MAP score for each
method, the methods are listed along the Y axis. For
DWRank-Meta models, we list the embeddings used in
the model in brackets. The colors of bars in figures cor-
respond to different types of input embeddings. The or-
ange color stands for the vanilla DWRank – DWRank
which uses only distributional embeddings. Purple de-
notes the DWRank-Graph variants. For the DWRank-
Meta approaches exploiting only distributional embed-
dings we use pink, and DWRank-Meta on word and
graph embeddings is denoted with the bright green
color. Previous SOTA approaches are shown in yellow.

The full results for all experiments on the English
and Russian datasets can be seen in Appendix A in Ta-
bles 12 and 13, respectively. Here, when listing em-
beddings used in DWRank-Meta models, we use the
shortcut “words” to denote the combination of fast-
Text, word2vec, and GloVe embeddings.

8.2. Results

DWRank-Meta Figures 2 and 3 show that the
leaderboard for both English and Russian nouns is
dominated by DWRank-Meta models. While English
benefits from the union of distributional and graph em-
beddings, for Russian distributional embeddings alone
perform on par with their combinations with graph
embeddings. Besides that, high-performing variants of
DWRank-Meta for English feature TADW, node2vec,
and GraphSAGE, whereas for Russian TADW is the
only graph embedding model which does not decrease
the scores of DWRank-Meta.

We see that triplet loss significantly improves the re-
sults for DWRank-Meta models (cf. AAEME/CAEME
with and without triplet loss) for both English and Rus-
sian.

DWRank-Graph On the other hand, DWRank-
Graph fails in the task of taxonomy extension for all
datasets. TADW model is the only graph embedding
model which can compete with DWRank-Meta mod-
els. This can be explained by the fact that TADW is
an extended version of DeepWalk and applies the skip-
gram model with the pre-trained fastText representa-
tions. In contrast to that, the other graph models suffer
from the noisy representations of OOV query words.

At the same time, despite the success of TADW, it
does not outperform models based solely on distribu-
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Figure 2. Comparison of the method performance on nouns_1.6 dataset for English. Each colour denotes the method type and the embeddings
type used.
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tional embeddings, showing that graph representations
apparently do not contribute any information which is
not already contained in distributional word vectors.

Baselines We also notice that for both languages the
baselines are quite competitive. They are substantially
worse than the best-performing models, but they are
much simpler to implement and is fast and easy to
train. Therefore, we suggest that it should be preferred
in the situation of limited resources and time.

However, the choice of embedding models is crucial
for the baselines (as well as for the vanilla DWRank
which performs closely). We see that fastText outper-
forms word2vec and GloVe embeddings for almost all
languages and datasets. The low scores of GloVe and
word2vec embeddings on baseline and DWRank meth-
ods can be explained by data coverage issues. Fixed
vocabularies of word2vec and Glove do not allow gen-
erating any representation for missing query words,
whereas fastText can handle them.

SOTA models Neither of SOTA models managed
to outperform the fastText baseline or approach the
best DWRank-Meta variants. Web-based synset rank-
ing (WBSR) model shows that the information from
online search engines and Machine Translation mod-
els is beneficial for the task – its performance with-
out this information drops dramatically. However, this

information is not enough to outperform the word
embedding-based models.

The performance of hypo2path model is even lower
than that of WBSR. Being an autoregressive generative
model, it is very sensitive to its own mistakes. Generat-
ing one senseless hypernym can ruin all the following
chain. Conversely, when starting with the root hyper-
nym “entity.n.01”, it often takes a wrong path. Finally,
TaxoExpan model relies on definitions of words which
we did not provide in this task. Therefore, its results
are close to zero. We do not consider them credible and
provide them in italics.

Performance for different datasets Figures 2 and 3
as well as the results in the appendix show that there
is no single best-performing model. While DWRank-
Meta is almost always the best, for different datasets
different variations of this model are the most success-
ful. The results are usually consistent for the same lan-
guage and part of speech (e.g. for different versions of
English nouns datasets the best-performing model is
the same), but there are exceptions to this regularity.

Interpretable Evaluation MAP metric which is
the standard way of evaluating taxonomy enrichment
models has a serious drawback. Namely, it is not in-
terpretable, which hampers the understanding of the
models’ performance.
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Figure 3. Performance of different models on the Russian non-restricted dataset. Each colour denotes the method type and the embeddings type
used.
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Therefore, in addition to MAP we report the Pre-
cision@k score which can be interpreted as the ratio
of correct synsets in the top-k outputs of a model. We
evaluate our best systems automatically with the Pre-
cision@k (k = 1, 2, 3) score. The choice of the values
of k is explained by the fact that the average number
of true ancestors is 2 for the English words and 3 for
the Russian words. Thus, Precision@k for k > 3 will
be unfairly understated, because there will always be
at most 3 correct answers out of k. This means that for
the k = 4 the maximum is 0.75, for k = 5 it is 0.6, etc.

Table 5 shows the Precision@k scores for the best
performing English and Russian models on the nouns
datasets. Both of them are DWRank-Meta models with
AAEME autoencoders. The English model uses three
types of distributional embeddings and TADW graph
embeddings, while the Russian model uses only fast-
Text and word2vec but benefits from the triplet loss.
We see that Precision@k is particularly high for Rus-
sian. There, over a half of generated lists contain a
correct synset in the first position. This shows that
DWRank-Meta can successfully be used as a helper
tool for taxonomy extension.

The results for English are lower. However, this
should not be considered as a sign of lower perfor-
mance of models for English. The Russian and English

datasets consist of different words, so they cannot be
directly compared.

9. Error Analysis

To better understand the difference in systems per-
formance and their main difficulties, we made a quan-
titative and qualitative analysis of the results.

9.1. Comparison of Graph-based Approaches with
Word Vector Baselines

First of all, we wanted to know to what extent the
set of correct answers of graph-based models overlaps
with the one of fastText-based models. In other words,
we would like to know if the graph representations are
able to discover hypernymy relations which could not
be identified by word embeddings.

Therefore, for each new word we computed aver-
age precision (AP) score and compared those scores
across different approaches. We found that at least
90% words for which fastText failed to identify cor-
rect hypernyms (i.e. words with AP = 0) also have
the AP of 0 in all the graph-based models. This means
that if fastText cannot provide correct hypernyms for
a word, other models cannot help either. Moreover, all
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Figure 4. Distribution of words over the number of senses.
(a) Russian dataset (nouns and verbs) (b) English dataset (nouns and verbs)

Method Pr@1 Pr@2 Pr@3

English nouns 1.6-3.0

baseline 0.260 0.184 0.144
DWRank 0.245 0.170 0.135
DWRank-Meta 0.288 0.185 0.143
DWRank-Graph 0.278 0.189 0.150
DWRank-Meta (Words + Graph) 0.311 0.199 0.154

English verbs 1.6-3.0

baseline 0.173 0.126 0.101
DWRank 0.260 0.169 0.126
DWRank-Meta 0.238 0.168 0.131
DWRank-Graph 0.238 0.158 0.118
DWRank-Meta (Words + Graph) 0.259 0.164 0.124

Russian non-restricted nouns

baseline 0.346 0.228 0.171
DWRank 0.347 0.228 0.172
DWRank-Meta 0.396 0.257 0.196
DWRank-Graph 0.347 0.224 0.168
DWRank-Meta (Words + Graph) 0.397 0.255 0.192

Russian non-restricted verbs

baseline 0.251 0.181 0.139
DWRank 0.282 0.196 0.154
DWRank-Meta 0.368 0.245 0.190
DWRank-Graph 0.274 0.191 0.149
DWRank-Meta (Words + Graph) 0.341 0.231 0.180

Table 5
Precision@k for the best-performing models for the English and
Russian nouns datasets.

words which are correctly predicted by graph-based
approaches, are also correctly predicted by fastText.
Moreover, only 8% to 55% words correctly predicted
by fastText are also correctly predicted by any of the
graph-based models. At the same time, the number of
cases where graph-based models perform better than
fastText is very low (3–5% cases). Thus, combining
them cannot improve the performance significantly.
This observation is corroborated by the scores of the
combined models.

To contrast the performance of the text and graph
embeddings and to demonstrate the input and the out-
put formats of the models we present Tables 7 and 8
in Appendix A. They demonstrate the main features of
the tested approaches. The examples do not pretend do
be the general case example, however, they do provide
the idea about ranking of the results and the perfor-
mance of text, graph and fusion embedding types.

9.2. Performance on Polysemous Words

The differences in word semantics make the dataset
uneven. In addition to that, we would also like to
understand whether the performance of models de-
pends on the number of connected components (possi-
ble meanings) for each word. Thus, we examine how
many words with more than one meaning can be pre-
dicted by the system.

Figure 4 depicts the distribution of synsets over the
number of senses they convey. As we can see, the
vast majority of words are monosemous. For Rus-
sian nouns, the system correctly identifies almost half
of them, whereas for other datasets the share of cor-
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rectly predicted monosemous words is below 30%.
This stems from the fact that for distributional models
it is difficult to capture multiple senses in one vector.
They usually capture the most widespread sense of a
word. Therefore, the number of predicted synsets with
two or more senses is extremely low. A similar power
law distribution would be obtained using BERT em-
beddings, as we are still averaging embeddings from
all contexts. This may be one of the reasons why con-
textualised models did not perform better than the fast-
Text models which capture the main meaning only but
do it well.

9.3. Error Types

In order to understand why a large number of word
hypernyms (at least 60%) are too difficult for models
to predict, we turn to manual analysis of the system
outputs. We find out that errors can be divided into two
groups: system errors caused by distributional models
limitations and taxonomy inaccuracies. Therefore, we
come across five main error types:

Type 1. Extracted nearest neighbours can be seman-
tically related words but not necessary co-hyponyms:

– delist (WordNet); expected senses: get rid of; pre-
dicted senses: remove, delete;

– хэштег (hashtag, RuWordNet); expected senses:
отличительный знак, пометка (tag, label);
predicted senses: символ, короткий текст
(symbol, short text).

Type 2. Distributional models are unable to predict
multiple senses for one word:

– latakia (WordNet); expected senses: tobacco; mu-
nicipality city; port, geographical point; predicted
senses: tobacco;

– запорожец (zaporozhets, RuWordNet); ex-
pected senses: житель города (citizen, resi-
dent); марка автомобиля, автомобиль (car
brand, car); predicted senses: автомобиль, мо-
тотранспортное средство, марка автомоби-
ля (car, motor car, car brand).

Type 3. System predicts too broad / too narrow con-
cepts:

– midweek (WordNet); expected senses: day of the
week, weekday; predicted senses: time period,
week, day, season;

– медянка (smooth snake, RuWordNet); expected
senses: неядовитая змея, уж (non-venomous
snake, grass snake); predicted senses: змея, реп-
тилия, животное (snake, reptile, animal).

Type 4. Incorrect word vector representation: near-
est neighbours are semantically far from the meaning
of the inputt word:

– falanga (WordNet); expected senses: persecution,
torture; predicted senses: fish, bean, tree, wood.;

– кубокилометр (cubic kilometer, RuWordNet);
expected senses: единица объема, единица
измерения (unit of capacity, unit of measure-
ment); predicted senses: город, городское по-
селение, кубковое соревнование, спортив-
ное соревнование (city, settlement, competi-
tion, sports contest).

Type 5. Unaccounted senses in the gold standard
datasets, inaccuracies in the manual annotation:

– emeritus (WordNet); expected senses: retiree,
non-worker; predicted senses: professor, aca-
demician;

– сепия (sepia, RuWordNet); expected senses:
морской моллюск “sea mollusc”; predicted
senses: цвет, краситель (color, dye).

In order to check how useful the predicted synsets
are for a human annotator (i.e. if a short list of possi-
ble hypernyms can speed up the manual extension of
a taxonomy), we conduct the manual evaluation of 10
random nouns and 10 random verbs for both languages
(the words are listed in Table 6). We focus on worse-
quality cases and thus select words whose MAP score
is below 1. Annotators with the expertise in the field
and the knowledge of English and Russian were pro-
vided with guidelines and asked to evaluate the out-
puts from our best-performing system. Each word was
labelled by 4 expert annotators, Fleiss’s kappa is 0.63
(substantial agreement) for both datasets.

We compute Precision@k score (the share of correct
answers in the generated lists from position 1 to k) for
k from 1 to 10, shown in Figure 5. We can see that even
for words with MAP below 1 our model manages to
extract useful hypernyms.

10. Conclusions

In this work, we performed a large-scale com-
putational study of various methods for taxonomy
enrichment. We also presented datasets for study-
ing diachronic evolution of wordnets for English
and Russian, extending the monolingual setup of the
RUSSE’2020 shared task [9] with a larger Russian
dataset and similar English versions.
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Figure 5. Manual datasets evaluation results: Precision@10.
(a) Russian dataset
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Table 6
Words selected for the manual evaluation.

Language Word List

English
falanga, venerability, ambulatory, emeritus, salutatory address, eigenvalue of a matrix,
liposuction, moppet, dinette, snoek, to fancify, to google, to expense, to porcelainize,
to junketeer, to delist, to podcast, to deglaze, to shoetree, to headquarter

Russian
барабашка, листинг, стихосложение, аукционист, точилка, гиперреализм,
серология, огрызок, фен, марикультура, уломать, отфотошопить, тяпнуть,
растушевать, завраться, леветь, мозолить, загоститься, распеваться, оплавить

We presented a new taxonomy enrichment method
called DWRank, which combines distributional infor-
mation and the information extracted from Wiktionary
outperforming the baseline method from [6] on the
English datasets. We also presented its extensions:
DWRank-Graph and DWRank-Meta which use graph
and meta- embeddings via a common interface.

We also explored the benefits of meta-embeddings
(combinations of embeddings) and graph embeddings
for the task of taxonomy enrichment. On the Russian
datasets DWRank-Meta performed best using fast-
Text and word2vec word embeddings. For the English
dataset the combination of word (fastText, word2vec
and GloVe) and graph (TADW) embeddings demon-
strated the best performance.

In this paper we also presented WBSR — a method
for taxonomy extension which leverages the informa-
tion from the Web. This approach was the current state
of the art in the task for the Russian language. Now
it lags significantly behind the new DWRank-meta ap-
proaches.

According to our experiments, word vector repre-
sentations are simple, powerful, and extremely effec-
tive instrument for taxonomy enrichment, as the con-
texts (in a broad sense) extracted from the pre-trained
word embeddings (fastText, word2vec, GloVe) and
their combination are sufficient to attach new words
to the taxonomy. TADW embeddings are also useful
and efficient for the taxonomy enrichment task and in
combination with the fastText, word2vec and GloVe
approaches demonstrate SOTA results for the English
language and compatible results for the Russian lan-
guage.

Error analysis also reveals that the correct synsets
identified by graph-based models are usually re-
trieved by the fastText-based model alone. This makes
graphs representations mostly irrelevant and excessive.
Nonetheless, there exist cases where graph representa-
tions were able to identify correctly some hypernyms
which were not captured by fastText.

Despite the mixed results of the application of
graph-based methods, we propose further exploration
of the graph-based features as the existing resource
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contains principally different and complementary in-
formation to the distributional signal contained in text
corpora. One way to improve their performance, may
be to use more sophisticated non-linear projection
transformations from word to graph embeddings. An-
other promising way in our opinion is to explore other
types of meta-embeddings to mix word and graph
signals, e.g. GraphGlove [84]. Moreover, we find it
promising to experiment with temporal embeddings
such of those of [85] for the taxonomy enrichment
task.

Last but not least, we plan to explore methods that
do not rely on the set of pre-defined candidates for in-
clusion in a taxonomy, as generation and mining of
such a set may be a challenging problem in its own.
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Appendix A. Ranked Examples and All Results

In this Appendix we provide Tables 7, 8 and 9 with the examples that demonstrate the input and the output formats
of the models as well as Tables 12 and 13 that show the performance of all models for both English and Russian
datasets.

From both tables 7 and 8 (underlined bold text denotes predictions of the model from the ground truth) we can
see that at least one of the correct candidates usually appears in the list of candidates from word embeddings (first
part of the table), whereas among candidates from graph embeddings we do not see any decent synsets. Poincaré
embeddings retrieved by aggregating words from fastText provide too broad concepts which are clearly too far from
the correct answers (“activity.n.01”, “exposure.n.03”, “action.n.02”). Node2vec embeddings are both semantically
far and abstract. GraphSAGE is sticking to the word “play” and are too far from the correct answers in general.
TADW manages to predict the correct synset “therapy.n.01” in the list of candidates, however, its position is much
lower than the positions of the same synsets among the candidates provided by word embeddings-based systems.

The candidates for the words “play therapy” and “eyewitness” provided by models based on text embeddings do
contain at least one true answer in the list. The position of such words varies from the forth to the sixth position.

DWRank-Meta on both word and graph embeddings may provide the results that improve the ranking, e.g. “ther-
apy.n.01” is the correct candidate on the first place in the list for both AAEME triple loss (fastText, word2vec and
GloVe) approach and for the AAEME (fastText, word2vec, Glove, TASDW) approach. For the word “eyewitness”
the DWRank-Meta models on words and graphs the true candidates are placed in the worse positions, however, they
still win before the DWRank-GRaph approach.

Table 7
Examples of predictions for noun from the English v 1.6-3.0 dataset with various models.

play therapy
psychotherapy.n.02, therapy.n.01

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

play.n.03 play.n.03 therapy.n.01 therapy.n.01
play.n.01 activity.n.01 activity.n.01 medical_care.n.01

baseball_play.n.01 plan_of_action.n.01 medical_care.n.01 play.n.03
therapy.n.01 therapy.n.01 diversion.n.01 play.n.01
activity.n.01 play.n.01 play.n.01 activity.n.01
diversion.n.01 dramatic_composition.n.01 act.n.02 dramatic_composition.n.01

plan_of_action.n.01 outdoor_game.n.01 psychotherapy.n.02 plan_of_action.n.01
action.n.01 medical_care.n.01 play.n.03 show.n.04
action.n.02 golf.n.01 dramatic_composition.n.01 treatment.n.01

dramatic_composition.n.01 diversion.n.01 behaviour_therapy.n.01 act.n.02

GraphSAGE TADW Poincaré node2vec

baseball_play.n.01 play.n.03 activity.n.01 presentation.n.03
play.n.03 play.n.01 exposure.n.03 presentation.n.01
play.n.01 plan_of_action.n.01 rejection.n.01 operation.n.01

squeeze_play.n.02 dramatic_composition.n.01 agreement.n.06 performance.n.02
activity.n.01 activity.n.01 light_unit.n.01 contact.n.01

diversion.n.01 baseball_play.n.01 blessing.n.01 exposure.n.03
dramatic_composition.n.01 show.n.04 vulnerability.n.02 activity.n.01

attempt.n.01 diversion.n.01 action.n.02 exposure.n.08
plan_of_action.n.01 use.n.01 influence.n.02 union.n.04

play.n.17 action.n.02 assent.n.01 exposure.n.06
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Table 8
Examples of predictions for nouns from the English v 1.6-3.0 dataset with various models.

Ramadan
islamic_calendar_month.n.01, calendar_month.n.01, fast.n.01, abstinence.n.02

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

islamic_calendar_month.n.01 islamic_calendar_month.n.01 calendar.n.01 islamic_calendar_month.n.01
calendar_month.n.01 calendar_month.n.01 islamic_calendar_month.n.01 calendar_month.n.01

holiday.n.02 time_period.n.01 calendar_month.n.01 time_period.n.01
religious_holiday.n.01 calendar.n.01 lunar_calendar.n.01 calendar.n.01

abstinence.n.02 islam.n.01 time_period.n.01 muslim.n.01
hindu_calendar_month.n.01 lunar_calendar.n.01 religionist.n.01 religionist.n.01

day.n.04 asian.n.01 muslim.n.01 religious_holiday.n.01
sacred_text.n.01 religion.n.02 religion.n.02 holiday.n.02

god.n.01 muslim.n.01 islam.n.01 lunar_calendar.n.01
place_of_worship.n.01 holiday.n.02 person.n.01 islam.n.01

graphSAGE TADW Poincaré node2vec

islamic_calendar_month.n.01 islamic_calendar_month.n.01 time_period.n.01 calendar_month.n.01
calendar_month.n.01 calendar_month.n.01 islamic_calendar_month.n.01 islamic_calendar_month.n.01

arab.n.01 time.n.02 religion.n.02 revolutionary_calendar_month.n.01
muslim.n.01 religious_holiday.n.01 time.n.02 islam.n.01
semite.n.01 calendar.n.01 measure.n.03 time_period.n.01

religionist.n.01 time_period.n.01 calendar_month.n.01 hindu_calendar_month.n.01
god.n.01 holiday.n.02 term.n.02 muharram.n.01
saint.n.02 lunar_calendar.n.01 year.n.01 shawwal.n.01

zoysia.n.01 god.n.01 time_off.n.01 rabi_i.n.01
islam.n.01 jewish_holy_day.n.01 leisure.n.01 rajab.n.01

Table 9
Examples of predictions for verbs from the English v 1.6-3.0 dataset with various models.

eyewitness
witness.v.01, watch.v.01

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

be.v.01 inform.v.01 inform.v.01 inform.v.01
be.v.03 testify.v.02 testify.v.02 testify.v.02
be.v.08 communicate.v.02 communicate.v.02 confirm.v.02

watch.v.01 announce.v.01 see.v.10 communicate.v.02
testify.v.01 confirm.v.02 confirm.v.02 watch.v.01
testify.v.02 watch.v.01 watch.v.01 be.v.01
man.v.02 testify.v.01 witness.v.02 affirm.v.03
talk.v.01 affirm.v.03 affirm.v.03 testify.v.01

guard.v.01 report.v.03 testify.v.01 reject.v.01
confirm.v.01 record.v.01 verify.v.01 experience.v.01

graphSAGE TADW Poincaré node2vec

see.v.05 inform.v.01 confirm.v.02 affirm.v.03
testify.v.02 testify.v.02 examine.v.02 confirm.v.02

err.v.01 communicate.v.02 affirm.v.03 understand.v.02
confirm.v.01 declare.v.01 testify.v.02 uphold.v.03

pronounce.v.02 announce.v.01 inform.v.01 determine.v.08
idealize.v.01 testify.v.01 justify.v.02 stay_in_place.v.01
judge.v.02 record.v.01 declare.v.01 justify.v.02
negate.v.03 watch.v.01 validate.v.03 fall_asleep.v.01
reason.v.01 report.v.03 uphold.v.03 resettle.v.01

disbelieve.v.01 report.v.01 testify.v.01 settle.v.04
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Table 10
Examples of predictions for verbs from the English v 1.6-3.0 dataset with various models.

theologise
cover.v.05, broach.v.01, chew_over.v.01, think.v.03

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

change.v.01 change.v.01 change.v.01 change.v.01
match.v.01 preface.v.01 preface.v.01 preface.v.01

date.v.03 make.v.03 convert.v.05 equal.v.03
reconstruct.v.01 date.v.03 match.v.01 date.v.03
determine.v.03 equal.v.03 chronologize.v.01 reconstruct.v.01

make.v.03 reason.v.01 reason.v.01 reason.v.01
speculate.v.01 chronologize.v.01 change_state.v.01 convert.v.05
convert.v.05 match.v.01 represent.v.09 formulate.v.03
reason.v.01 film.v.02 make.v.03 reflect.v.04

automatize.v.01 formulate.v.03 change.v.02 film.v.02

graphSAGE TADW Poincaré node2vec

process.v.02 change.v.01 state.v.01 settle.v.04
affect.v.01 preface.v.01 speculate.v.01 stay_in_place.v.01

change.v.01 date.v.03 reason.v.01 understand.v.02
dive.v.01 film.v.02 preface.v.01 study.v.03
tame.v.01 reconstruct.v.01 match.v.01 resettle.v.01

sensitize.v.02 equal.v.03 generalize.v.01 fall_asleep.v.01
convert.v.01 convert.v.05 announce.v.02 speculate.v.01
estimate.v.01 formulate.v.03 express.v.02 discover.v.07
subject.v.01 reason.v.01 add.v.02 explicate.v.02

compound.v.05 commemorate.v.03 equal.v.01 behave.v.02

Table 11
Examples of predictions for verbs from the English v 1.6-3.0 dataset with various models.

immunise
protect.v.01, defend.v.02, inject.v.01, administer.v.04

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

indoctrinate.v.01 indoctrinate.v.01 teach.v.01 inject.v.01
inject.v.01 protect.v.01 treat.v.01 remove.v.01

defend.v.02 defend.v.02 insert.v.02 inform.v.01
remove.v.01 teach.v.01 prevent.v.01 change.v.01

treat.v.01 prevent.v.02 isolate.v.01 better.v.02
destroy.v.01 inject.v.01 inoculate.v.01 insert.v.02
prevent.v.02 insert.v.02 indoctrinate.v.01 defend.v.02
insert.v.02 defend.v.01 kill.v.01 kill.v.01
teach.v.01 kill.v.01 change.v.01 indoctrinate.v.01

administer.v.04 discriminate.v.02 enable.v.01 protect.v.01

graphSAGE TADW Poincaré node2vec

defend.v.02 protect.v.01 teach.v.01 receive.v.01
protect.v.01 indoctrinate.v.01 insert.v.02 insert.v.02

act.v.01 teach.v.01 inform.v.01 stay_in_place.v.01
negociate.v.01 defend.v.02 treat.v.01 get.v.01

attack.v.03 prevent.v.02 train.v.01 inject.v.01
prevent.v.02 inject.v.01 deceive.v.02 fall_asleep.v.01
insert.v.02 prevent.v.01 indoctrinate.v.01 accept.v.02

demilitarize.v.01 insert.v.02 misinform.v.01 settle.v.04
disarm.v.02 isolate.v.01 gull.v.02 resettle.v.01

foreswear.v.02 discriminate.v.02 interact.v.01 discover.v.07
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Table 12
MAP scores for the taxonomy enrichment methods for the English datasets. Numbers in bold show the best model within the category,
underlined numbers denote the best score across all the models. The combination of word embeddings (fastText, word2vec, GloVe) is denoted
as words.

method
Nouns Verbs

1.6-3.0 1.7-3.0 2.0-3.0 1.6-3.0 1.7-3.0 2.0-3.0

Baseline [6]

fastText [71] 0.338±0.002 0.371±0.002 0.400±0.004 0.270±0.007 0.203±0.010 0.236±0.011
word2vec [72] 0.142±0.001 0.178±0.002 0.164±0.004 0.229±0.006 0.155±0.008 0.212±0.009
GloVe [39] 0.232±0.002 0.188±0.001 0.233±0.004 0.146±0.005 0.149±0.008 0.191±0.010

DWRank-Word

fastText [71] 0.314±0.001 0.373±0.003 0.418±0.004 0.286±0.007 0.218±0.008 0.254±0.012
word2vec [72] 0.244±0.001 0.271±0.003 0.298±0.004 0.099±0.005 0.118±0.008 0.141±0.010
GloVe [39] 0.283±0.001 0.329±0.003 0.377±0.004 0.182±0.007 0.159±0.008 0.203±0.011

DWRank-Meta (Meta-embeddings based on Word Embeddings)

concat (words) 0.335±0.001 0.386±0.003 0.386±0.003 0.270±0.007 0.194±0.009 0.226±0.011
SVD (words) 0.333±0.001 0.399±0.003 0.456±0.004 0.277±0.007 0.209±0.010 0.264±0.012
CAEMEwords) 0.321±0.001 0.386±0.003 0.448±0.005 0.278±0.007 0.205±0.008 0.266±0.015
AAEME (words) 0.322±0.001 0.384±0.003 0.453±0.004 0.271±0.007 0.218±0.008 0.273±0.012

CAEME triplet loss (words) 0.332±0.001 0.394±0.003 0.451±0.004 0.273±0.007 0.205±0.007 0.256±0.013
AAEME triplet loss (words) 0.335±0.001 0.391±0.003 0.453±0.004 0.280±0.008 0.212±0.007 0.262±0.014

DWRank-Graph

GCN [62] 0.175±0.001 0.249±0.002 0.267±0.002 0.162±0.006 0.113±0.005 0.149±0.010
GAT [63] 0.000±0.000 0.252±0.002 0.000±0.000 0.081±0.003 0.064±0.004 0.000±0.000
GraphSAGE [79] 0.214±0.001 0.282±0.002 0.224±0.003 0.127±0.004 0.114±0.004 0.090±0.008
TADW [81] (on fastText) 0.350±0.001 0.392±0.002 0.435±0.004 0.268±0.007 0.201±0.007 0.217±0.010
Poincaré [76] (top-5 fastText associates) 0.185±0.001 0.211±0.002 0.229±0.002 0.208±0.006 0.147±0.006 0.172±0.012
node2vec [52] (top-5 fastText associates) 0.270±0.001 0.312±0.002 0.341±0.004 0.175±0.006 0.128±0.007 0.118±0.012
HOPE [83] 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DWRank-Meta (Meta-embeddings based on Word and Graph Embeddings)

SVD (words + node2vec) 0.343±0.001 0.383±0.003 0.434±0.005 0.272±0.006 0.194±0.009 0.239±0.011
CAEME (words + node2vec) 0.335±0.001 0.379±0.003 0.426±0.004 0.242±0.005 0.184±0.009 0.221±0.012
AAEME (words + node2vec) 0.350±0.001 0.394±0.003 0.446±0.004 0.252±0.007 0.184±0.008 0.208±0.012

SVD (words + TADW) 0.355±0.001 0.414±0.003 0.472±0.004 0.288±0.007 0.222±0.009 0.280±0.013
CAEME (words + TADW) 0.350±0.001 0.404±0.003 0.458±0.004 0.267±0.007 0.212±0.007 0.247±0.011
AAEME (words + TADW) 0.367±0.001 0.418±0.002 0.480±0.004 0.283±0.007 0.227±0.007 0.260±0.012

SVD (words + GCN) 0.323±0.001 0.385±0.003 0.443±0.004 0.260±0.005 0.209±0.009 0.249±0.011
CAEME (words + GCN) 0.331±0.001 0.395±0.003 0.457±0.004 0.251±0.006 0.207±0.009 0.235±0.012
AAEME (words + GCN) 0.331±0.001 0.392±0.003 0.456±0.004 0.243±0.006 0.200±0.008 0.228±0.012

SVD (words + GraphSAGE) 0.338±0.001 0.401±0.003 0.464±0.004 0.239±0.006 0.194±0.009 0.221±0.011
CAEME (words + GraphSAGE) 0.323±0.001 0.382±0.003 0.435±0.004 0.200±0.006 0.170±0.007 0.202±0.01
AAEME (words + GraphSAGE) 0.343±0.001 0.406±0.003 0.468±0.004 0.238±0.007 0.178±0.008 0.209±0.011

State-of-the-art Approaches

WBSR (Top-1 RUSSE’2020 for nouns) 0.333±0.002 0.393±0.003 0.436±0.003 0.252±0.006 0.206±0.011 0.252±0.013
WBSR, no search engine features 0.251±0.001 0.309±0.003 0.344±0.004 0.231±0.006 0.180±0.008 0.222±0.009

hypo2path rev [67] 0.264±0.001 0.283±0.003 0.238±0.007 0.173±0.005 0.104±0.008 0.118±0.009
hypo2path [67] 0.252±0.002 0.261±0.002 0.208±0.006 0.162±0.005 0.093±0.006 0.067±0.008
hypo2path transformer 0.218±0.002 0.229±0.002 0.057±0.002 0.140±0.003 0.120±0.006 0.100±0.008

TaxoExpan [61] 0.004±0.000 0.003±0.000 0.054±0.002 0.001±0.000 0.000±0.000 0.000±0.000
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Table 13
MAP scores for the taxonomy enrichment methods for the Russian datasets. Numbers in bold show the best model within the category,
underlined numbers denote the best score across all the models.

method
nouns verbs

non-restricted restricted non-restricted restricted

Baseline

fastText [71] 0.414±0.001 0.549±0.006 0.296±0.004 0.389±0.011
word2vec [72] 0.263±0.001 0.427±0.006 0.343±0.004 0.445±0.013

DWRank (Word Embeddings)

fastText [71] 0.419±0.001 0.572±0.005 0.337±0.003 0.428±0.007
word2vec [72] 0.296±0.002 0.569±0.005 0.250±0.003 0.284±0.011

DWRank (Meta-embeddings based on Word Embeddings)

concat (words) 0.422±0.001 0.589±0.005 0.351±0.004 0.426±0.009
SVD (words) 0.461±0.001 0.600±0.005 0.426±0.005 0.475±0.010
CAEME (words) 0.400±0.001 0.561±0.005 0.342±0.003 0.416±0.008
AAEME (words) 0.456±0.001 0.582±0.005 0.368±0.004 0.442±0.009

CAEME triplet loss (words) 0.449±0.001 0.581±0.005 0.374±0.003 0.427±0.010
AAEME triplet loss (words) 0.474±0.001 0.593±0.006 0.399±0.004 0.449±0.010

DWRank (Graph embeddings)

GCN [57] 0.183±0.001 0.306±0.005 0.220±0.003 0.287±0.009
GAT [63] 0.142±0.001 0.318±0.004 0.000±0.000 0.000±0.000
GraphSAGE [79] 0.176±0.001 0.348±0.005 0.181±0.003 0.226±0.008
TADW [81] 0.417±0.001 0.562±0.005 0.328±0.003 0.423±0.008
Poincaré [76] (top-5 fastText associates) 0.336±0.001 0.476±0.005 0.244±0.004 0.339±0.009
node2vec [52] (top-5 fastText associates) 0.343±0.002 0.477±0.005 0.226±0.003 0.322±0.010
HOPE [83] 0.000±0.000 0.000±0.000 0.003±0.001 0.003±0.001

DWRank (Meta-embeddings based on Word and Graph Embeddings)

SVD (words + node2vec) 0.367±0.001 0.521±0.005 0.252±0.003 0.351±0.010
CAEME (words + node2vec) 0.370±0.001 0.533±0.005 0.267±0.003 0.362±0.010
AAEME (words + node2vec) 0.373±0.001 0.529±0.005 0.272±0.003 0.358±0.010

SVD (words + TADW) 0.469±0.001 0.604±0.006 0.394±0.005 0.455±0.010
CAEME (words + TADW) 0.429±0.001 0.571±0.005 0.349±0.003 0.437±0.009
AAEME (words + TADW) 0.461±0.001 0.584±0.005 0.362±0.004 0.439±0.009

SVD (words + GCN) 0.395±0.001 0.554±0.005 0.291±0.004 0.356±0.009
CAEME (words + GCN) 0.389±0.001 0.544±0.005 0.302±0.003 0.381±0.008
AAEME (words + GCN) 0.386±0.001 0.545±0.006 0.295±0.004 0.365±0.008

SVD (words + GraphSAGE) 0.410±0.001 0.603±0.005 0.336±0.004 0.426±0.009
CAEME (words + GraphSAGE) 0.321±0.001 0.541±0.005 0.266±0.004 0.345±0.007
AAEME (words + GraphSAGE) 0.409±0.001 0.577±0.006 0.323±0.004 0.419±0.009

State-of-the-art Approaches

WBSR (Top-1 RUSSE’2020 for nouns) 0.393±0.002 0.552±0.005 0.293±0.004 0.428±0.010
WBSR, no search engine features 0.369±0.002 0.497±0.005 0.267±0.004 0.387±0.009
Top-1 RUSSE’2020 for verbs: [33] 0.288±0.001 0.418±0.006 0.341±0.004 0.452±0.012

hypo2path [67] 0.061±0.000 0.097±0.002 0.137±0.003 0.174±0.009
hypo2path rev [67] 0.246±0.001 0.342±0.006 0.151±0.003 0.194±0.008
hypo2path rev transformer [67] 0.234±0.001 0.331±0.004 0.152±0.003 0.201±0.008

TaxoExpan [61] 0.007±0.000 0.006±0.001 0.009±0.001 0.008±0.002
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