Tatiana Podladchikova

Download CV

Tatiana Podladchikova

Assistant Professor
Space Center

Dr. Tatiana Podladchikova specializes in the development of innovative approaches in estimation theory to extract
a useful knowledge from noisy experimental data, control and forecasting for broad range of space applications:
space weather, solar physics, navigation and biomedical research and the development of fundamental tools
for analyzing and solving a broad class of estimation problems. Often advantages of developed data exploitation
tools to solve one problem, in particular, approaches to predictive modeling, image recognition, noise statistics identification,
and dynamical state estimation in conditions of uncertainty, lead to progress in interdisciplinary applications.

Solar activity forecasting, detection of active events on the Sun to mitigate hazards of space accidents and their consequences.
Development of adaptive techniques for tracking of moving objects.

Recent projects

–  Geomagnetic Storm Forecasting Service
Extended geomagnetic storm forecast based on real-time ACE solar wind and interplanetary magnetic field data providing
advance warning about the future geomagnetic storm magnitude (updated every hour).

Updated medium-term sunspot number prediction service
A universal technique that improves medium-term sunspot number prediction methods as they are monthly updated
using the last available observations of smoothed sunspot numbers using adaptive Kalman filter (updated every month).

Forecast of the auroral oval boundaries and aurora borealis on Yamal island
Forecast based on real-time ACE solar wind and interplanetary magnetic field data and provides estimates of geomagnetic latitudes
of poleward and equatorward boundaries of the auroral oval, and equatorward boundary of the diffusive aurora for the next hour
(updated every hour).

Recent publications

1. Podladchikova T., and R.A.M. Van der Linden (2016),  Sunspot number second differences as precursor of the next 11-year sunspot cycle.
Submitted to Journal of Space Weather and Space Climate.

Short description:  In this study we introduce a new characteristic, namely the sunspot number second differences (SNSD),
that are considered as precursor of the next 11-year sunspot cycle. We demonstrate a clear relationship between the SNSD
variations of the current cycle right after reaching its peak and the strength of ensuing cycle. On the basis of the developed
predictive indicator, at the early stage of declining phase of cycle 24, we predict that the sunspot cycle 25 will be weaker
than the current cycle 24.

2. Podladchikova, T. V., Y. Y. Shprits, and A. C. Kellerman, (2016), Customizations of the Kalman Filter to Reconstruct the Dynamics
of Earth’s Radiation Belts using Satellite Measurements, Special issue of Space Research Institute Russian
Academy of Science  “Practical aspects of Heliogeophysics”,  series  “Applied aspects of space weather”.

Short description: Adaptive Kalman filter on the basis of noise statistics identification using electron flux measurements
of Van Allen Probes is developed to reconstruct globally the state and evolution of Earth’s radiation belts.
A technique to determine the rate of radial diffusion and the direction of its propagation is proposed.

3.    Podladchikova, T. V., Y. Y. Shprits, D. Kondrashov, and A. C. Kellerman (2014), Noise statistics identification for Kalman filtering
of the electron radiation belt observations I: Model errors, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA019897.

Short description: The development of innovation tools to identify the errors in theoretical models of radiation belts.
This tool is used to improve our confidence in the results of radiation belt electron phase space density reconstruction
by an adaptive Kalman filter.

4.    Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2014), Noise statistics identification for
Kalman filtering of the electron radiation belt observations: 2. Filtration and smoothing, J. Geophys. Res. Space Physics, 119,
doi:10.1002/2014JA019898.

Short description: The development of identification technique of measurement errors to optimize the data assimilation
of sparse satellite data. This provides the accurate and reliable global reconstruction of radiation belt dynamics.
Further improvement of radiation belt reconstruction is achieved by the backward smoothing procedure applied
to the forward Kalman filter.

5.    Podladchikova,T. V., and A. A. Petrukovich (2012), Extended geomagnetic storm forecast ahead of available solar wind
measurements, Space Weather, 10, S07001, doi:10.1029/2012SW000786.

Short description:  Real-time space weather service that provides the forecast of the geomagnetic storm magnitude
for the next several hours based on real-time solar wind and interplanetary magnetic field data.

6.    Podladchikova T., and R.A.M. Van der Linden (2012), Kalman Filter Technique for Improving Prediction of Smoothed
Monthly Sunspot Numbers. Solar Physics, 277 (2), 397-416 , doi:10.1007/s11207-011-9899-y.

Short description:  Real-time space weather service that provides the medium-term forecasting of the sunspot number
for the next 12 months using adaptive Kalman filter

7.    Podladchikova T., and R.A.M. Van der Linden (2011), An upper limit prediction of the peak sunspot number for solar cycle 24.
Space Weather and Space Climate, 1, A01, doi:10.1051/swsc/2011110013.

Short description: The prediction of the maximum sunspot number in solar cycle 24 once the epoch of the minimum of cycle 23
has passed (2008 January). According to the prediction the peak value of cycle 24 will not exceed 72.

Recent conferences

  1. Podladchikova T.V., and A.A. Petrukovich (2016), Forecast of future geomagnetic storm strength: 5 years online,
    13th European Space Weather Weak (November 14 -18, Ostend, Belgium).
  2. Podladchikova T.V., and R. Van der Linden (2016), Short-term variations of the sunspot number second differences
    as a predictor of the next cycle strength, 13th European Space Weather Weak (November 14 -18, Ostend, Belgium).
  3. Podladchikova T.V., and R. Van der Linden, (2016), Predictive potential of short-term variations of sunspot number
    second derivative, Conference “Plasma Phenomena in the Solar System”, (February 15 -19, Moscow, Russia)
  4. Podladchikova, T. V., Y. Y. Shprits, and A. C. Kellerman, (2016), Customizations of the Kalman Filter to Reconstruct
    the Dynamics of Earth’s Radiation Belts using Satellite Measurements, Conference “Plasma Phenomena in the Solar System”,
    (February 15 -19, Moscow, Russia)
  5. Podladchikova, T. V., Y. Y. Shprits, and A. C. Kellerman (2015), Kalman filtering and smoothing of the Van Allen Probes
    observations to estimate the radial, energy and pitch angle diffusion rates, AGU Fall Meeting, (December  14-18, San Francisco, USA).
  6. Podladchikova, T. V., Y. Y. Shprits, and A. C. Kellerman (2015), Estimation of radial, energy and pitch angle diffusion rates of radiation
    belt electrons using Van Allen Probes observations (2015), GEM Summer Workshop (June 14-19, Snowmass, CO, USA)
  7. Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2015), Customizations of the Kalman Filter for the
    Three-Dimensional Data Assimilation to Reconstruct the Dynamics of the Radiation Belts,  Inner Magnetosphere Coupling III,
    (March 23-27, Los Angeles, USA).
  8. Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2014), Customizations of the Kalman Filter for the
    Three-Dimensional Data Assimilation to Reconstruct the Dynamics of the Radiation Belts,  AGU Fall Meeting,
    (December  15-19, San Francisco, USA).
  9. Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2014), Model error identification for the radiation belt
    data assimilation, The 40th COSPAR Scientific Assembly (August 2 – 10, Moscow, Russia).
  10. Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2014), Optimal smoothing of the electron radiation belts
    observations using the observation errors identification, The 40th COSPAR Scientific Assembly (August 2 – 10, Moscow, Russia).
  11. Podladchikova, T. V., and A.A. Petrukovich (2014), Geomagnetic storm forecasts several hours ahead,
    The 40th COSPAR Scientific Assembly (2 – 10 August, Moscow, Russia).
  12. Podladchikova, T. V., and R. Van der Linden (2014), Short-term variations of the 11-year sunspot cycle as a predictor
    of the next cycle strength, The 40th COSPAR Scientific Assembly (August 2 – 10, Moscow, Russia).
  13. Podladchikova, T. V., Y. Y. Shprits, A. C. Kellerman, and D. Kondrashov (2014), Identification of model and measurement
    noise statistics for Kalman filtering and smoothing of the electron radiation belt PSD (2014), GEM Summer Workshop
    (June 15-20, Portsmouth, VA, USA).
  14. Podladchikova T.V., and R. Van der Linden. (2011), Updated Medium‐Term Sunspot Number Prediction Service using
    Kalman Filter, Eight European Space Weather Weak (November 28 – December 2, Namur, Belgium).
  15. Podladchikova T.V., and A.A. Petrukovich (2011), Geomagnetic Storm Forecasting Service, Eight European Space Weather Weak
    (November 28 – December 2, Namur, Belgium).
  16. Podladchikova T.V. and A.A. Petrukovich (2011), Joint research of geomagnetic storm forecasting, International Conference
    “Space research in the states – participants of CIS: integration, capacity development and legal aspects”
    (October 3-5, Moscow, Russia).
  17. Podladchikova T.V., and R. Van der Linden, (2011), Adaptive Kalman filter for the medium-term sunspot number prediction,
    Conference “Plasma Phenomena in the Solar System”, (February 14-18, Moscow, Russia)

 

2015 The International Alexander Chizhevsky medal for Space Weather and Space
Climate for major contributions to space weather research and/or services.

2015  Excellence in Service Award, Skolkovo Institute of Science and Technology,
in recognition of outstanding performance and contribution to Skoltech mission and values.

2015 Certificate of Appreciation, Skolkovo Institute of Science and Technology,
for the notable contribution and service on the Organizing Committee at Skoltech Poster Competition in 2014 and 2015.

2011 Bottle of French Champagne for the paper to be first published in Journal of Space
Weather and Space Climate, a link between all the communities involved in Space Weather and in Space Climate.

2009 Best poster at European Space Weather Week 6, Belgium.

March 2017 Public lecture “Sun and Space Weather”,  Experimentanium Science Museum,  educational program “Scientists for kids”, Moscow.

February 2017 Space sector course. Aerospace business: The Devil is in the Details  (English, Russian).

September 2016 Public lecture “Where Does the Solar Wind Blow”,  educational program for exhibition “Cosmos: birth of new age”,  Moscow.

May 2016 Public lecture  “In arms of the star called Sun”,  The Spring School 2016 for the Oxford Russia Fund fellows.

March 2016 Prime Minister of Russia Dmitry Medvedev meets with representatives of science and business (Russian).
First channel and Mir 24 also covered the news, Russia.

February 2016 Public lecture  “Space Weather Forecast: Yesterday, Today, Tomorrow”, Russian State Library for Young Adults, Moscow.

December 2015  Radio program “Science in Focus”, Echo of Moscow radio station, Russia.

November 2015 Tatiana Podladchikova, applied mathematician from Skoltech, was awarded with the prestigious
International Alexander Chizhevsky medal (English, Russian). Sk.ru and the electronic journal
RF Science and Technology‘ also covered the news.

April 2015 Public lecture  “Hot Breath of the Sun” Polytechnic Museum, Moscow (in Russian).

July 2014 Skoltech Researchers Achieve Unprecedented Accuracy in “Space Forecast” and Magnetospheric Reconstruction –
New Method Might Save Satellites and Predict Extreme Weather (English, Russian).

 

Course “Space data processing: making sense of experimental data”
The course introduces students to practically useful approaches of data processing for control and forecasting.
The focus is on identifying the hidden and implicit features and regularities of dynamical processes using experimental data.
The course exposes data processing methods from multiple vantage points: standard data processing methods and their hidden
capacity to solve difficult problems; statistical methods based on state-space models; methods of extracting the regularities
of a process on the basis of identifying key parameters. The course addresses the problems in navigation, solar physics,
geomagnetism, space weather and biomedical research.
Course content and main topics:  Course_Space_Data_Processing_Making_Sense_of_Experimental_Data