Download CV

Personal Websites

Anatoly Dymarsky

Assistant Professor
Center for Energy Systems

Anatoly is a theoretical physicist interested in a variety of topics centered around understanding of strongly coupled systems. Strong coupling means that the constituent parts of a complex system cannot be considered in isolation. This is a frequently occurring situation in many areas of physics and related fields. Examples of strong coupling range from interacting elementary particles to complex electric power systems.  Advancing understanding of such systems is very challenging but is also very rewarding. Often progress made in one particular area can lead to inter-disciplinary developments across several fields.

Anatoly graduated from Princeton University with a PhD in Physics in 2007. He continued as a postdoc at Stanford University and then at the Institute for Advanced Study. Before joining Skoltech in 2013, Anatoly was a senior research associate at University of Cambridge.

One of the main topics of Anatoly’s research has been applying holographic correspondence toward strongly coupled quantum field theories (QFTs). Holography is a novel theoretical framework that reformulates QFTs in terms of more transparent classical geometry (gravity) in a curved space. This approach proved to be helpful for an array of interesting problems of high-energy and condensed matter physics. Furthermore, Anatoly relied on holography to describe models of cosmological inflation. Currently, Anatoly is using holography to study quantum entanglement, the quantity which measures to what extent the system in question “is truly quantum”.

Another important direction of Anatoly’s research is focused on conformal field theories (CFTs) in various dimensions. CFTs describe points of second order phase transitions, including quantum phase transitions, which are especially important to understand as they frequently occur in many novel systems and materials of practical importance (such as high temperature superconductors).  New theoretical developments in this area give hope to effectively “solve”, or predict important properties of various CFTs with help of well-established optimization methods.

More recently, Anatoly started working on problems of stability and control of electrical power systems utilizing various techniques of theoretical physics.

  • Dynamics of strongly coupled systems
  • Applications of holographic correspondence
  • Nonperturbative QFT, conformal bootstrap
  • Quantum Information and dynamics of quantum systems
  • Theoretical aspects of power systems

1-year projects for students and researchers

  • Precision ETH without full diagonalization (numerical)
  • Eigenstate Thermalization without quantum chaos (partially numerical, partially analytical)
  • Bounds on thermalization rate for quantum systems

A. Dymarsky, F. Kos, P. Kravchuk, D. Poland, D. Simmons-Duffin, “The 3d Stress-Tensor Bootstrap,” [arXiv:1708.05718].

A. Dymarsky, J. Penedones, E. Trevisani, A. Vichi, “Charting the space of 3D CFTs with a continuous global symmetry,” [arXiv:1705.04278].

A. Dymarsky, H. Liu, “Canonical Universality,” [arXiv:1702.07722].

A. Dymarsky, N. Lashkari, H. Liu, “Subsystem ETH,” [arXiv:1611.08764].

N. Lashkari, A. Dymarsky, H. Liu, “Eigenstate Thermalization Hypothesis in Conformal Field Theory,” [arXiv:1610.00302].

A. Dymarsky, H. Liu, “Canonical Typicality of Energy Eigenstates of an Isolated Quantum System,” [arXiv:1511.06680].

A. Dymarsky, A. Zhivoedov, “Scale-invariant breaking of conformal symmetry,” J.Phys. A48 (2015) 41, 41FT01 [arXiv:1505.01152].

A. Dymarsky, “Can Froissart Bound Explain Hadron Cross-Sections at High Energies?,” JHEP 1507 (2015) 106 [arXiv:1412.8642].

A. Dymarsky, “Convexity of a small ball under quadratic map,” Linear Algebra and its Applications, Volume 488, 1 January 2016, Pages 109–123 [arXiv:1410.1553]

A. Dymarsky, K. Farnsworth, Z. Komargodski, M. Luty, V. Prilepina, “Scale Invariance, Conformality, and Generalized Free Fields,” JHEP 1602 (2016) 099 [arXiv:1402.6322].

A. Dymarsky, “On the four-point function of the stress-energy tensors in a CFT,” JHEP 1510 (2015) 075 [arXiv:1311.4546].

A. Dymarsky and S. Massai, “Uplifting the baryonic branch: a test for backreacting anti-D3-branes,” JHEP 1411 (2014) 034  [arXiv:1310.0015].

A. Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, “On Scale and Conformal Invariance in Four Dimensions,” JHEP 1510 (2015) 171 [arXiv:1309.2921].

S. Behbahani, A. Dymarsky, M. Mirbabayi, L. Senatore, “(Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation,” JCAP 1212 (2012) 036, [arXiv:1111.3373].

A. Dymarsky and S. Kuperstein, “Non-supersymmetric Conifold,” JHEP 1208 (2012) 033 [arXiv:1111.1731].

F. Benini and A. Dymarsky, “Comments on the N=1 SU(M+p)xSU(p) quiver gauge theory with flavor,” Phys. Rev. D 85, 046004 (2012)

A. Dymarsky, “On gravity dual of a metastable vacuum in Klebanov-Strassler theory,”  JHEP 1105 (2011) 05 [arXiv:1102.1734].

A. Dymarsky, L. Martucci, “D-brane non-perturbative effects and geometric deformations,” JHEP 1104, 061 (2011) [arXiv:1012.4018].

A. Dymarsky, D. Melnikov and J. Sonnenschein, “Attractive Holographic Baryons,” JHEP 1106 (2011) 145 [arXiv:1012.1616].

A. L. Cotrone, A. Dymarsky and S. Kuperstein, “On Vector Meson Masses in a Holographic SQCD,” JHEP 1103, 005 (2011), [arXiv:1010.1017].

D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov and L. McAllister, “D3-brane Potentials from Fluxes in AdS/CFT,” JHEP 1006, 072 (2010) [arXiv:1001.5028].

D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov and L. McAllister, “Compactification Effects in D-brane Inflation,” Phys. Rev. Lett. 104, 251602 (2010) [arXiv:0912.4268 ].

A. Dymarsky and V. Pestun, “Supersymmetric Wilson loops in N=4 SYM and pure spinors,” JHEP 1004, 115 (2010) [arXiv:0911.1841].

A. Dymarsky, “Flavor brane on the baryonic branch of moduli space,” JHEP 1003, 067 (2010) [arXiv:0909.3083].

A. Dymarsky, S. Kuperstein and J. Sonnenschein, “Chiral Symmetry Breaking with non-SUSY D7-branes in ISD backgrounds,” JHEP 0908, 005 (2009) [arXiv:0904.0988].

F. Benini, A. Dymarsky, S. Franco, S. Kachru, D. Simic and H. Verlinde, “Holographic Gauge Mediation,” JHEP 0912, 031 (2009) [arXiv:0903.0619].

A. Dymarsky, D. Melnikov, A. Solovyov, “I-odd sector of the Klebanov-Strassler theory,” JHEP 0905, 105 (2009) [arXiv:0810.5666].

D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov, L. McAllister, “Holographic Systematics of D-brane Inflation,” JHEP 0903, 093 (2009) [arXiv:0808.2811].

M. Benna, A. Dymarsky, I. R. Klebanov, A. Solovyov, “On Normal Modes of a Warped Throat,” JHEP 0806, 070 (2008), [arXiv:0712.4404].

A. Dymarsky and D. Melnikov, “Gravity Multiplet on KS and BB Backgrounds,” JHEP 0805, 035 (2008), [arXiv:0710.4517].

A. Dymarsky and D. Melnikov, “Holographic U(1)R multiplets,” Nucl. Phys. Proc. Suppl. 171, 300 (2007).

D. Baumann, A. Dymarsky, I. R. Klebanov and L. McAllister, “Towards an Explicit Model of D-brane Inflation,” JCAP 0801, 024 (2008) [arXiv:0706.0360].

D. Baumann, A. Dymarsky, I. R. Klebanov, L. McAllister and P. J. Steinhardt, “A Delicate Universe,” Phys. Rev. Lett. 99, 141601 (2007), [arXiv:0705.3837].

A. Dymarsky, D. Melnikov, “On the glueball spectrum in the Klebanov-Strassler model,” Published in JETP Lett.84: 368-371,2006, Pisma Zh.Eksp.Teor.Fiz. 84:440-444,2006.

M. K. Benna, A. Dymarsky and I. R. Klebanov, “Baryonic condensates on the conifold,” JHEP 0708, 034 (2007), [arXiv:hep-th/0612136].

D. Baumann, A. Dymarsky, I. R. Klebanov, J. Maldacena, L. McAllister and A. Murugan, “On D3-brane potentials in compactifications with fluxes and wrapped D-branes,” JHEP 0611, 031 (2006) [arXiv:hep-th/0607050].

A. Dymarsky, S. Gubser, Z. Guralnik and J. M. Maldacena, “Calibrated surfaces and supersymmetric Wilson loops,” JHEP 0609, 057 (2006) [arXiv:hep-th/0604058].

A. Dymarsky, I. R. Klebanov and N. Seiberg, “On the moduli space of the cascading SU(M+p) x SU(p) gauge theory,” JHEP 0601, 155 (2006) [arXiv:hep-th/0511254].

A. Dymarsky, I. R. Klebanov and R. Roiban, “Perturbative gauge theory and closed string tachyons,” JHEP 0511, 038 (2005) [arXiv:hep-th/0509132].

A. Dymarsky, I. R. Klebanov and R. Roiban, “Perturbative search for fixed lines in large N gauge theories,” JHEP 0508, 011 (2005) [arXiv:hep-th/0505099].

A. Dymarsky, I. R. Klebanov and R. Roiban, “Beta functions for double-trace couplings in orbifold gauge theories,” Conference talk, Int. J. Mod. Phys. A 20, 6278 (2005).

A. Dymarsky and D. Melnikov, “Comments on BPS bound state decay,” Phys. Rev. D 69, 125001 (2004) [arXiv:hep-th/0303200].

A. Dymarsky and D. Melnikov, “S-charge monodromy mechanism in N = 2 SYM from semiclassical point of view,” Conference talk, “Cargese 2002, Progress in string, field and particle theory” 389-392

A. Dymarsky and V. Pestun, “On the property of Cachazo-Intriligator-Vafa prepotential at the extremum of the superpotential,” Phys. Rev. D 67, 125001 (2003) [arXiv:hep-th/0301135].

A. Dymarsky, “String theory derivation of RR couplings to D-branes,” Conference talk, [arXiv:hep-th/0206191].

A. Dymarsky, “Noncommutative field theory in formalism of first quantization,” Phys. Lett. B 527, 125 (2002), [arXiv:hep-th/0104250].

Princeton University Centennial Fellowship in Science and Engineering, 2003-2007

Institute for Theoretical and Experimental Physics Pomeranchuk award for young scientists, 2002

Elena Gryazina
Research Scientist
Alexander Avdoshkin
Research Intern
Kirill Pavlenko
Research Intern

Think Through Math

“Think Through Math” is an innovative mathematics course designated for graduate students specializing in the physical sciences and engineering. The goal of the course is to teach students to recognize, formulate and solve mathematical problems emerging from practical applications. The course will help students develop vital problem-solving skills preparing them for a career in industry or academia. The title “Think Through Math” reflects the aspiration that upon finishing this course a graduate student will be able to look at her or his research through the lenses of the appropriate mathematical ideas. To this end, the course incorporates ample amount of example applications ranging from chemical physics to computer vision.

The course will be covering such topics as variational methods, linear algebra, ordinary and partial differential equations, basic probability and statistics. To facilitate understanding of more advanced and unfamiliar concepts, the course is heavily relying on active learning techniques. The lectures are infused with hands-on activities and peer learning exercises. In addition to lectures, there are problem-solving workshops and discussion sessions.  The total expected student workload is 20 hours peer week, split equally between classwork and individual home assignments.

Science in Focus, Radio Station “Echo of Moscow”, December 7, 2014  (in Russian)

Expert magazine, by Alexander Mechanick, February 9, 2015 (in Russian)

Comments on 2017 Nobel prize in physics for Profile magazine, October 5, 2017 (in Russian)

Comments on 2017 Nobel prize in physics for Skolkovo Foundation, October 6, 2017 (in Russian)

ФИО: Дымарский Анатолий Яковлевич
Занимаемая должность (должности): Старший Преподаватель
Преподаваемые дисциплины: Математическое мышление
Ученая степень: PhD, 2007 г., Принстон, США; кандидат физико-математических наук, 2006 г., МГУ
Ученое звание (при наличии): нет
Наименование направления подготовки и/или специальности: Физика
Данные о повышении квалификации и/или профессиональной переподготовке (при наличии): нет
Общий стаж работы: 10 лет
Стаж работы по специальности: 10 лет