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Abstract

We design a novel network architecture for learning dis-
criminative image models that are employed to efficiently
tackle the problem of grayscale and color image denois-
ing. Based on the proposed architecture, we introduce two
different variants. The first network involves convolutional
layers as a core component, while the second one relies in-
stead on non-local filtering layers and thus it is able to ex-
ploit the inherent non-local self-similarity property of natu-
ral images. As opposed to most of the existing neural net-
works, which require the training of a specific model for
each considered noise level, the proposed networks are able
to handle a wide range of different noise levels, while they
are very robust when the noise degrading the latent image
does not match the statistics of the one used during train-
ing. The latter argument is supported by results that we
report on publicly available images corrupted by unknown
noise and which we compare against solutions obtained by
alternative state-of-the-art methods. At the same time the
introduced networks achieve excellent results under addi-
tive white Gaussian noise (AWGN), which are comparable
to the current state-of-the-art network, while they depend
on a more shallow architecture with the number of trained
parameters being one order of magnitude smaller. These
properties make the proposed networks ideal candidates to
serve as sub-solvers on restoration methods that deal with
general inverse imaging problems such as deblurring, de-
mosaicking, superresolution, etc.

1. Introduction
Image denoising is among the basic low-level computer-

vision problems and has received significant attention in
both academic research as well as in practical digital imag-
ing applications [9, 32]. However, during the past decade
there was little progress in improving the state-of-the art
denoising performance and it has been suggested that de-
noising algorithms have reached optimality and cannot be
further improved [28]. Despite these beliefs, very recently
and thanks to the advent of deep learning methods, sev-

eral powerful image denoising algorithms that managed to
significantly improve the state-of-the-art performance have
been introduced [6, 23, 38, 40, 42, 43]. Nevertheless, their
wide applicability in real-world applications is currently
hindered mainly because the majority of them involves the
training of a specific model for each considered noise level.
Such requirement is rather impractical since it implies that a
huge number of network parameters, analogous to the num-
ber of noise levels that the models are trained for, needs
to be stored. This directly excludes the application of such
methods on devices with limited memory capacity. Another
important limitation of such deep-learning methods is that
their denoising performance deteriorates very fast when the
noise level distorting the input images deviates from the one
that the model was originally trained for.

In this work, motivated by the recent advances in deep
learning and relying on the rich body of algorithmic ideas
developed in the past for dealing with image restoration
problems, we introduce a novel network architecture specif-
ically tailored to image denoising, which allows the train-
ing of image models that can handle a wide range of noise
levels. Based on the proposed network architecture we in-
troduce two different variants. The first network involves
convolutional layers as a core component and behaves sim-
ilarly to local variational methods, while the second one re-
lies on a non-local filtering layer that allows us to exploit
the inherent non-local self-similarity property of natural im-
ages. Both networks lead to very competitive results, which
are directly comparable to the state-of-the art, while they
involve considerably less parameters than the current best-
performing network. At the same time they are robust and
perform very well for inputs distorted by noise whose statis-
tics differ from the ones of the noise model used for training.

2. Image Restoration

To restore a latent grayscale or color image X from a
corrupted observation Y, we rely on the linear model

y = Hx+ n. (1)
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In this setting, y, x ∈ RN ·C are the vectorized versions of
the observed and latent images, Y and X respectively, N is
the number of pixel in each image channel, C is the num-
ber of channels, H is a linear operator that corresponds to
the response of the imaging device, and n is the measure-
ment noise that accounts for all possible errors during im-
age acquisition, including stochastic noise and the possible
mismatch between the observation model and the physical
image acquisition process. For image denoising, which is
the focus of this work, the linear operator H reduces to the
identity matrix I, since it is assumed that the imaging de-
vice does not introduce any other distortions to the latent
signal. Regarding the term n, the most common assump-
tion in the literature, which we also adopt in this work, is
that it is zero-mean i.i.d Gaussian noise with variance σ2.

While the additive white Gaussian noise (AWGN) as-
sumption is not frequently met in practice, an efficient so-
lution of this problem is extremely valuable for two main
reasons. The first one is that even in cases where the noise
is signal dependent, there are several techniques available
in the literature, such as variance stabilization transforms
(VST) [1,12,30], which are able to transform the input data
in a different domain so that the noise follows a Gaussian
distribution with a fixed variance. Therefore, the solution
can be obtained by first performing Gaussian denoising in
the transform domain and then mapping the solution back
to the original domain using the inverse VST. The second
reason is that such a solution, in the context of convex op-
timization, can be interpreted as a proximal map [33] of
a regularization function. Such proximal maps typically
serve as building blocks of several powerful optimization
schemes that have been proposed in the literature, including
Majorization-Minimization [11, 18] and variable-splitting
strategies [3]. These optimization strategies can address
more general image restoration problems such as image de-
blurring, superresolution, demosaicking, inpainting, etc.

2.1. Image Priors

While Eq. (1) corresponds to a linear problem, the pres-
ence of the noise, whose exact realization is unknown, com-
bined with the fact that usually the operator H is singular,
makes it an ill-posed problem [2, 41]. This implies that a
unique solution does not exist and therefore we cannot rely
solely on the image evidence but we need to further exploit
a priori information. In this case, the utilization of suitable
prior models of image or scene properties plays an instru-
mental role in the success of image restoration methods.

While there are several ways of imposing prior knowl-
edge on the solution, among the most popular strategies is
the variational approach. In this framework, image recovery
is cast as a minimization problem of an objective function
of the form

f (x) = d (x;H,y) + λ r (x) , (2)

where the minimizer corresponds to the recovered latent im-
age. The role of the objective function is to quantify the
quality of the solution and typically consists of two terms as
shown in Eq. (2). The first term is the data fidelity, which
measures the proximity of the solution to the observation,
and the second one is the regularizer. The role of the reg-
ularizer is crucial since it encodes our prior knowledge by
penalizing solutions that do not feature the desired proper-
ties. The parameter λ ≥ 0, is used to combine the two terms
and to adjust their contribution on the final result. Interest-
ingly, the variational approach has direct links to Bayesian
estimation methods and the derived solutions can be inter-
preted either as penalized maximum likelihood or as maxi-
mum a posteriori (MAP) estimates [2, 11].

As emphasized previously, a good choice for the regular-
izer is instrumental to the success of any variational-based
image restoration method. A generic formulation that can
be used to describe the majority of the most successful reg-
ularizers in the literature, is provided below

r (x) =

K∑
k=1

ϕ (Lkx) , (3)

where L : RN 7→ RK×D corresponds to the regulariza-
tion operator (Lkx ∈ RD denotes the D-dimensional k-th
entry of the result obtained by applying L to the image x)
and ϕ : RD 7→ R is a potential function. Indeed, by vary-
ing the regularization operator L and the potential function
ϕ we can derive several existing regularization functionals.
Typical choices for the operator L are first or higher-order
differential operators such as the gradient [4, 36], the struc-
ture tensor [26], the Laplacian and the Hessian [24,27]. For
the potential function there is also a wide variety of possi-
ble choices with the most popular ones being the ℓp vector
norms and the Schatten matrix norms. The main reason for
this is that their combination with linear operators leads to
convex regularizers which are amenable to efficient opti-
mization and provide certain convergence guarantees.

Besides the local regularization methods mentioned
above1, the definition of Eq. (3) can also describe non-local
regularization functionals such as those in [10, 14, 20, 25,
44]. In this case, L is designed so that it allows interactions
between distant points in the image domain. This way it is
possible to capture long-range dependencies between image
points and thus model the so called non-local self similarity
(NLSS) property that natural images exhibit. This property
implies that images typically consist of localized patterns
that are repeated in different and possibly distant locations
in the image domain. NLSS is an important property and
if properly exploited it can effectively distinguish the im-
age content from noise and other types of distortions. This

1These methods are considered local in the sense that the regularization
operator is localized and its influence is restricted in a small area around
the pixel of interest.



has been demonstrated for several image restoration prob-
lems [8, 14, 25].

2.2. Constrained Optimization

In the variational framework the choice of the regularizer
has an important effect on the quality of the restored im-
age. Equally important is our ability to efficiently compute
the minimizer of the overall objective function. Image de-
noising under AWGN, amounts to solving an unconstrained
optimization problem of the form :

x∗ = argmin
x

1

2
∥y − x∥22 + λ

K∑
k=1

ϕ (Lkx) , (4)

where for the regularizer we use the generic description of
Eq. (3), while for the fidelity term we use a quadratic cost,
in accordance with the Gaussian noise assumption.

As mentioned earlier, λ is a ‘free’ parameter that needs
to be tuned by the user and different values lead to dif-
ferent restoration results of varying image quality. There-
fore, among others one of the main challenges is to choose
the value for the regularization parameter λ, that will lead
to the best possible result under some image quality crite-
rion. Unfortunately, there is not a direct way to a priori
relate the strength of λ with the quality of the result. There-
fore, in practice, λ is either tuned empirically or heuristic
techniques such as the L-curve method [16] are employed,
which involve solving Problem (4) for several values of λ.

One way to circumvent this difficulty, is to consider the
following equivalent formulation

x∗ = argmin
∥y−x∥2≤ε

K∑
k=1

ϕ (Lkx) , (5)

which transforms the original problem to a constrained op-
timization form. Problems (4) and (5) are equivalent in the
sense that : for any ε > 0 such that Problem (5) is feasible,
a solution of (5) is either the null vector or else it is a solu-
tion of Problem (4) for some λ > 0 [34]. To answer what is
that we gain by pursuing such a reformulation, we note that
while in Eq. (5) there is still a free parameter ε that needs to
be tuned, this parameter is directly related to the noise level
distorting the latent image x. In particular, we observe that
it holds ∥y − x∥2 = ∥n∥2 ∝ σ. Given that there are sev-
eral methods available for estimating the standard deviation
of the noise from the noisy input [13, 29], we now have a
good indication about the range of values that the parame-
ter ε should lie in, as opposed to the previous formulation.

2.3. Minimization Strategy

To attack the minimization problem of Eq. (5) we can
rely on a splitting variable technique such as the Alternating
Direction Method of Multipliers [3]. Here, however, we

opt for a simpler approach that utilizes a gradient-descent
algorithm. To do so, we first rewrite Eq. (5) as

x∗ = argmin
x

K∑
k=1

ϕ (Lkx) + ιC(y,ε) (x) , (6)

where

ιC(y,ε) (x) =

{
0, if ∥y − x∥2 ≤ ε

∞, otherwise
, (7)

is the indicator function of the convex set C.
Next, we assume that the potential function ϕ is smooth

and thus we can compute its partial derivatives. Since this
is not the case for the indicator function, instead of the
gradient descent algorithm we employ the proximal gradi-
ent method (PGM) [33]. This is a gradient descent vari-
ant that can deal with functions consisting of both smooth
and non-smooth terms. According to PGM the function
f (x) to be minimized is split into two terms, a smooth
and a non-smooth one. In our case we naturally have
f (x) = r (x) + ιC (x), where based on the smoothness as-
sumption for the potential function ϕ, the regularizer r (x)
corresponds to the smooth term. Then, the solution is com-
puted in an iterative fashion, using the update rule

xt = proxγtιC

(
xt−1 − γt∇xr

(
xt−1

))
, (8)

where γt is a step-size and proxγtιC
is the proximal opera-

tor [33] related to the indicator function ιC .
The proximal map of the indicator function ιC in Eq. (8)

corresponds to an orthogonal projection of the input onto
the set C. This can be computed in closed form as

ΠC (v) = y + ε
v − y

max (∥v − y∥2 , ε)
. (9)

Given that the gradient of the regularizer is computed as

∇xr (x) =

K∑
k=1

LT
kψ (Lkx) ≡ h (x) , (10)

with ψ (z) = ∇zϕ (z), z ∈ RD and using Eq. (9), we re-
write Eq. (8) as

xt = ΠC
(
xt−1 − ht

(
xt−1

))
with ht (x) = γt h (x) . (11)

A careful inspection of Eqs. (9) and (11) leads us to the
useful observation that under this approach the solution is
obtained by recursively subtracting from the input refined
estimates of the noise realization that distorts it. In particu-
lar, for the first iteration and given that x0 = y we have

x1 = y − ε
h1 (y)

max (∥h1 (y)∥2 , ε)
= x+ (n− n1). (12)
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Figure 1. The architecture of the non-local filtering layer. The
input of the layer is x while y is the network input based on which
the block matching is computed.

Here h1 (y) can be interpreted as an estimation module,
which is equipped with a whitening mechanism so that it
can infer from the input, the noise realization that distorts it.
The noise realization estimate is further normalized to en-
sure that it has the correct variance and then it is subtracted
from the noisy input. This leads to an output which consists
of the latent image plus some residual noise, n − n1. The
subsequent updates refine the noise estimate and remove it
from the original input as follows

xk = y − nk = x+
(
n− nk

)
, k > 1 (13)

where

nk = ε
nk−1 + hk

(
xk−1

)
max (∥nk−1 + hk (xk−1)∥2 , ε)

. (14)

3. Proposed Network
From the previous analysis it is clear that the success

of the iterative denoising scheme that we described in Sec-
tion 2.3 depends exclusively on how well the function h,
defined in Eq. (10), can estimate the realization of the noise.
Designing such a function amounts to specifying the opera-
tor L and the gradient of the potential function ϕ. Manually
selecting proper values for these parameters is a cumber-
some task. For this reason, we pursue a machine learning
approach and design a neural network that has the capacity
to learn these parameters in a discriminative fashion from
training data. In the same spirit with previous network ar-
chitectures for restoration tasks [6,23,38], we consider each
PGM update as a composition of network layers and con-
struct our network as a cascade of such layers.

The remaining issue to be addressed is the parameteri-
zation of the operator L and function ψ in a way that will
facilitate the learning of the network’s parameters in an ef-
ficient and computationally tractable way.

3.1. Local and Nonlocal Operators

As mentioned in Section 2.1 common choices for the
regularization operator L are local differential operators. In
the discrete setting, image derivatives are typically com-
puted as convolutions of the image with a filterbank con-
sisting of several high-pass kernels. Naturally, this leads

image filtering transpose  
filtering 

non-linear 
activation  

projection  −	

shared parameters 

Figure 2. Schematic representation of the composite layer that
serves as the core component of the proposed network architec-
ture. Depending on the parametrization of the regularization oper-
ator, the filtering (transpose filtering) layer correspond to either a
convolutional or a non-local filtering layer.

us to parametrize L as a convolutional layer, which is a
widely used component in modern deep neural networks.
One point however that requires our attention is that in
order to learn a valid regularization operator, the filters
utilized for its parametrization need to be zero-mean [7].
Moreover, since the function ψ will also be learned, if we
inspect equation (10) we will notice that without further
imposing a fixed scale to the operators Lk, it is possible
that two different sets of parameters (Lk, ψ) and

(
L̂k, ψ̂

)
lead to the same result. Such a situation can occur if we
choose L̂k = βLk and ψ̂ (βz) = 1

βψ (z), which gives

LT
kψ (Lkx) = L̂T

k ψ̂
(
L̂kx

)
. To ensure that the learned op-

erators will satisfy both the zero-mean and the fixed-scale
constraints, we parametrize the weights w ∈ RL of each
filter in the convolutional layer as

w = s (v − v̄) / ∥v − v̄∥ , (15)

where s is a scalar trainable parameter. Training the convo-
lutional layers with this new parametrization can be done as
usual using a stochastic gradient descent method. The gra-
dient of the new parameters s and v w.r.t the loss function
L can be computed as

∇sL = ⟨w/s , ∇wL⟩ and ∇vL = Mv∇wL, (16)

where Mv = s
∥v−v̄∥

(
I− 11T

L

)(
I− (v−v̄)(v−v̄)T

∥v−v̄∥2

)
, v̄ de-

notes the mean value of v, and 1 is a column vector of ones.
Interestingly, the same parametrization of Eq. (15) but

without the mean subtraction has been recently proposed
in [37] as an alternative to batch-normalization [19]. How-
ever, in [37] the motivation is different and the aim is to
make the training of deep networks more robust.

Besides the parametrization of L as a local operator, we
further explore another option where we model L as a non-
local operator. This leads to a second variant of the pro-
posed network architecture. Our motivation for employing
a non-local regularization operator is that the resulting net-
work can take advantage of the NLSS property that we re-
ferred to in detail in the introduction. To this end, we adopt
the parametrization that was proposed in [23]. Specifically,
the non-local operator can be expressed as the composition
of three layers : 1) a convolution layer, where we use the



parametrization that we adopted earlier, that applies a lin-
ear transformation to every patch extracted from the im-
age2, 2) a block-matching layer which forms a 3-D group
for every valid patch and it consists of the P most simi-
lar patches to the reference patch (including the reference
patch itself) and 3) a collaborative-filtering layer that filters
the grouped patches along the dimension of the group in a
similar fashion as the Non-Local Means filter (NLM) [5]. In
this last layer each 3-D group is projected to a single patch.
A schematic representation of the described parametrization
is provided in Fig. 1. This combination of layers leads to a
non-local filtering approach similar to the one initially pro-
posed in [8] but with two main differences. The first one is
that the authors in [8] use fixed transforms while here the
transforms are learned. The second one is that in the third
step of the non-local operation an 1-D transformation along
the group dimension is applied instead of the weighted sum
that we use in this work. Therefore, in our case the output of
the adopted non-local filtering layer leads to an output of the
same size as the input, while in [8] the output is augmented
in the third dimension by a factor of P . An additional re-
mark relevant to the implementation of the described non-
local filtering layer is that we constrain the weights of the
third sub-layer to sum to one. This is consistent to the way
that the NLM filter is defined. To impose this constraint
we parametrize the weights g ∈ RP as g = ν−1u with
ν = ⟨1 , u⟩. In this case the gradient of the new parameters
u w.r.t the loss function L are computed as

∇uL = ν−1
(
I− ν−1uT

)
∇gL. (17)

3.2. Parametrization of the Potential Function

Having defined the parametrization of the operator L, we
further need to model the function ψ (see Eq. (10)), which
corresponds to the gradient of the potential function ϕ. To
do so, first we assume that the potential function ϕ is sepa-
rable, that is it can be expressed in the form

ϕ (z) =

D∑
d=1

ϕd (zd) , (18)

and thus, ψ (z) =
[
ψ1 (z1) ψ2 (z2) . . . ψD (zD)

]T ≡
∇zϕ (z), with ψi (zi) = ∂ϕ (z) /∂zi. Next, we parametrize
the partial derivatives ψi as a linear combination of Radial
Basis Functions (RBFs), i.e.

ψi (x) =

M∑
j=1

πijρj (|x− µj |) , (19)

where πij are the expansion coefficients and µj are the cen-
ters of the basis functions ρj [17]. For our networks we

2Passing an image through a convolution layer of F filters whose sup-
port are H×W , corresponds to applying a linear mapping RH×W 7→ RF

to every image patch of size H ×W . In addition, the stride of the convo-
lutional layer determines the overlap between consecutive image patches.

use Gaussian RBFs, ρj (r) = exp
(
−ajr2

)
, and we employ

M = 51 Gaussian kernels whose centers are distributed
equidistantly in the range [-100, 100] and they all share the
same precision parameter a. To make sure that the input x
lies in the specified range, a clipping layer is preceding the
RBF-mixture layer. The representation of ψi using mixtures
of RBFs is very powerful and allow us to approximate with
high accuracy arbitrary non-linear functions. Details about
the computation of the gradient of the parameters πij and of
the input z w.r.t to the loss function L can be found in [23].

3.3. Trainable Projection Layer

The final component for the construction of the pro-
posed network architecture is the projection layer, which
is defined in Eq. (9). In this work we consider ε as a
trainable parameter and we express it as ε = eαθ with
θ = σ

√
N · C − 1, where σ is the standard deviation of

the noise and N ·C is the total number of pixel in the image.
Based on this parametrization and using the identity

max (x, y) = 0.5 (|x− y|+ x+ y), we compute the gra-
dient of the input v w.r.t to the loss function L as

∇vL = εγ
(
I− β+γ2 (v − y) (v − y)

T
)
∇qL, (20)

where q = ΠC (v), β+ = (1 + sign (∥v − y∥2 − ε)) /2
and γ = 1/max (∥v − y∥2 , ε). Additionally, the gradient
of the parameter α w.r.t the loss function L is computed as

∇αL = µ (v − y)
T ∇qL, (21)

where β− = (1− sign (∥v − y∥2 − ε)) /2 and µ =
εγ (1− εγβ−). Note that for all the formulas above we
are using the convention sign (0) = −1.

4. Network Training
We train our networks for grayscale and color image

denoising under i.i.d Gaussian noise. Each network con-
sists of a cascade of S composite layers, as the one shown
in Fig. 2, plus an additional clipping layer placed just be-
fore the output of the network. This last layer incorpo-
rates our prior knowledge about the valid range of image
intensities and forces the pixel values of the restored im-
age to lie in the range [0, 255]. The network parameters
Θ =

[
Θ1, . . . ,ΘS

]
, where Θt = {st,vt, gt,πt, αt}3 de-

notes the set of parameters for the t-th layer, are learned
using a loss-minimization strategy given Q pairs of training
data {yq,xq}Qq=1. Here yq is a noisy input and xq is the
corresponding ground-truth image. To achieve an increased
capacity for the network, we learn different parameters for
each composite layer. However, the convolutional and non-
local filtering layers (for the local and non-local version of

3For the local variants of the proposed network, the parameters gt are
not present in the parameter set Θt.



(a) (b) (e) (d) (e)
Figure 3. Grayscale image denoising. (a) Original image, (b) Noisy image (AWGN with σ = 20) ; PSNR = 22.10 dB. (c) Denoised image using
EPLL [45] ; PSNR = 31.54 dB. (d) Denoised image using DCNN [42] ; PSNR = 31.83 dB. (e) Denoised image using UNet5; PSNR = 31.71 dB.

(a) (b) (e) (d) (e)
Figure 4. Color image denoising. (a) Original image, (b) Noisy image (AWGN with σ = 30) ; PSNR = 18.57 dB. (c) Denoised image using CBM3D [8]
; PSNR = 28.55 dB. (d) Denoised image using DCNN [42] ; PSNR = 29.08 dB. (e) Denoised image using CUNLNet5; PSNR = 29.13 dB.

the network, respectively) in each composite layer share the
same parameters {st,vt, gt} with their transpose layers.

Since the objective function to be minimized is non-
convex, to avoid getting stuck in poor local-minima we ini-
tialize our networks with the parameters that are learned fol-
lowing a greedy-training strategy. The same approach has
been adopted in [6, 23, 38] and it amounts to learning the
parameters of each composite layer by keeping all the pre-
ceding layers of the network fixed and minimizing the cost

L
(
Θt

)
=

Q∑
q=1

ℓ
(
x̂t
q,xq

)
. (22)

In Eq. (22), x̂t
q is the output of the t-th composite layer and

the loss function ℓ corresponds to the negative peak signal-
to-noise-ratio (PSNR). This is computed as ℓ (y,x) =
−20 log10 (p/ ∥y − x∥2), where p = 255

√
N · C. While

these learned parameters are sub-optimal, we have exper-
imentally observed that they serve as a good initialization
for the joint optimization training that follows.

To minimize the objective function in Eq. (22) w.r.t the
parameters Θt we employ the Adam algorithm [21], which
is a variant of the stochastic gradient descent (SGD) that
involves adaptive normalization of the learning rate. Each
layer is trained for 100 epochs using an initial learning rate
1e-2 (1e-3 for grayscale images), while the configuration
parameters for Adam are chosen as beta_1 = 0.9, beta_2
= 0.999 and eps = 1e-4.

The final parameters of our network are obtained by us-
ing the previous learned parameters as initial values and by
jointly minimizing the objective function

L (Θ) =

Q∑
q=1

ℓ
(
x̂S
q ,xq

)
, (23)

w.r.t to all network parameters Θ. This cost function does
not take into account anymore the intermediate results (out-
puts of each composite layer) but only depends on the final
output of the network x̂S

q . In this case the training is per-
formed by running 100 epochs using Adam optimization
with the same configuration parameters as before.

5. Experiments and Results
To train our local and non-local models we generated

the training data using the Berkeley segmentation dataset
(BSDS) [31], which consists of 500 images. We split these
images in two sets, a training set which consists of 400 im-
ages and the validation set which consists of the remaining
100 images. All the images were randomly cropped so that
their size is 180 × 180 pixel. We note that the 68 BSDS
images of [35] that are used for the comparisons reported
in Tables 1 and 2 are strictly excluded from the training set
and only cropped versions of them are used in the validation
set. The proposed models were trained on a NVIDIA 1080
Ti GPU and the software we used for training and testing
was built on top of MatConvnet [39].

Grayscale denoising Following the strategy described in
Section 4, we have trained two variants of our proposed
network. In the first network, we parametrize the regu-
larization operator L as a local operator and in the sec-
ond one as a non-local operator. Both networks consist of
S = 5 composite layers each and we will refer to them as
UNet5 and UNLNet5, respectively. For the local model,
in order to parametrize the operator L, in each composite
layer we employ a convolution layer of 48 filters, which are
zero-mean, fixed-norm and have a support 7 × 7. For the
non-local model, instead of the convolution layer we utilize



Noise level - σ (std.)
Methods 5 10 15 20 25 30 35 40 45 50 55 avg.
BM3D [8] 37.57 33.30 31.06 29.60 28.55 27.74 27.07 26.45 25.99 25.60 25.26 28.93
EPLL [45] 37.55 33.36 31.18 29.73 28.67 27.84 27.16 26.58 26.09 25.71 25.34 29.02

WNMM [15] 37.76 33.55 31.31 29.83 28.73 27.94 27.28 26.72 26.26 25.85 25.49 29.16
DCNN [42] 37.68 33.72 31.60 30.19 29.15 28.33 27.66 27.10 26.62 26.21 25.80 29.46
UNet5 37.59 33.54 31.38 29.93 28.84 28.01 27.38 26.85 26.38 25.95 25.53 29.22

UNLNet5 37.62 33.62 31.47 30.04 28.96 28.13 27.50 26.96 26.48 26.04 25.64 29.32
UNLNetorc5 37.79 33.97 31.95 30.59 29.51 28.54 27.97 27.47 26.97 26.41 25.80 29.72

Table 1. Grayscale denoising comparisons for different noise levels over the standard set of 68 [35] Berkeley images. Performance is
measured in terms of average PSNR (in dB). The highlighted results refer to those of the non-local model with oracle grouping.

Noise Methods
σ (std.) CBM3D [8] CDCNN [42] CUNet5 CUNLNet5 CUNLNetorc5

5 40.24 40.11 40.31 40.39 40.54
10 35.88 36.11 36.08 36.20 36.70
15 33.49 33.88 33.78 33.90 34.58
20 31.88 32.36 32.21 32.34 33.11
25 30.68 31.22 31.03 31.17 31.95
30 29.71 30.31 30.06 30.24 31.06
35 28.86 29.57 29.37 29.53 30.37
40 28.06 28.94 28.77 28.91 29.75
45 27.82 28.39 28.23 28.37 29.19
50 27.36 27.91 27.74 27.89 28.65
55 26.95 27.45 27.27 27.44 28.10

avg. 30.99 31.48 31.35 31.49 32.18

Table 2. Color denoising comparisons for different noise levels
over the standard set of 68 [35] Berkeley images. Performance
is measured in terms of average PSNR (in dB). The highlighted
results refer to those of the non-local model with oracle grouping.

the non-local filtering layer as described in Section 3.1. In
this case, similar to the local network, we utilize 48 filters
of 7 × 7 support. As explained in Section 3.1 this corre-
sponds to applying a non-redundant linear transformation,
T : R7×7 7→ R48 on every image patch of size 7 × 7 ex-
tracted from the input image, excluding the DC component
(the low-pass content) of the transform. Finally, in order to
form the group of similar patches as required by the sec-
ond step of the non-local filtering layer, we use the P = 8
closest neighbors (including the reference patch) while the
similar patches are searched on the noisy input of the net-
work in a window of 31 × 31 centered around each pixel.
The same group indices are then used for all the composite
layers of the network.

We trained two UNet5 and UNLNet5 networks, one for
low input noise levels (σ < 30) and one for high input noise
levels (30 ≤ σ < 55). For the low-noise network training,
the training data were distorted with AWGN of standard de-
viation that varies from σ = 5 to σ = 29 with increments
of 4 and for the high-noise network with AWGN of stan-
dard deviation that varies from σ = 30 to σ = 55 using the
same increments. To evaluate the restoration performance

of our proposed networks, in Table 1 we report comparisons
with recent state-of-the-art denoising methods on the stan-
dard evaluation dataset of 68 images [35] for eleven differ-
ent noise levels, where the standard deviation of the noise
varies from σ = 5 to σ = 55 with increments of 5.

From these results we observe that the proposed net-
works perform better than all non-deep learning methods
but they are outperformed by the deep network (DCNN)
of [42]. Specifically, on average our local model UNet5
leads to results that are 0.25 dB worse than DCNN, while
our non-local network UNLNet5 performs better than the
local one but still falls behind DCNN around 0.15 dB on
average. Nevertheless, the memory footprint of the pro-
posed networks is about fourteen times smaller than that of
DCNN (48K versus 666K parameters), which makes them
ideal for deployment in mobile devices where memory stor-
age is limited. More importantly, as we demonstrate later,
our models show an excellent denoising performance under
more realistic noise conditions, as opposed to DCNN which
performs poorly. In Table 1 we further report the results ob-
tained by our non-local network when the indices of similar
patches are computed from the ground-truth images. In this
case we observe that UNLNet5

orc outperforms DCNN and
leads to an average increase of 0.25 dB. While this is not a
practical scenario to consider, these results highlight the fact
that a better grouping approach, which is out of the scope
of the current work, can lead to further improvements in the
restoration quality without any need to re-train the network.
Representative grayscale denoising results that demonstrate
visually the restoration quality of the proposed models are
shown in Fig. 3.

Color denosing Similar to the grayscale case we trained
two different network configurations, one using a local op-
erator and one using a non-local operator. The only dif-
ference between the color denoising network architecture
and the grayscale one is that the convolution layers used
in the color-denoising networks consist of 74 filters of sup-
port 5 × 5 × 3. The rest of the network parameters and
the training setup remains the same as above. In Table 2
we report results for several noise levels and our compar-



(a) Noisy image (σ = 15) (b) DCNN [42] (c) BM3D [8] (d) Noise Clinic [22] (e) UNet5

(a) Noisy image (σ = 22) (b) DCNN [42] (c) CBM3D [8] (d) Noise Clinic [22] (e) CUNLNet5
Figure 5. Real grayscale and color image denoising. The details in the results are better seen by zooming in on a computer screen.

isons involve only methods that are specifically designed to
handle color images. We refrain from reporting results ob-
tained by grayscale methods applied on each image channel
independently, since these results are not competitive to the
ones obtained from methods specifically designed for color
denoising.

From Table 2 we observe that our color networks out-
perform CBM3D [8], which has been the state-of-the-art
method for almost a decade, by 0.35 dB for the local model
and 0.5 dB for the non-local model and they are very com-
petitive to CDCNN [42] which is the current state-of-the-
art. Specifically, the proposed non-local network on aver-
age matches the performance of DCNN while it is consid-
erably more shallow with 7 times less parameters (93K ver-
sus 668K). Another important advantage of the proposed
networks, as it will be demonstrated next, is that similarly
to the grayscale case they perform very well when the noise
distorting the input is not AWGN, as opposed to DCNN that
cannot handle successfully such cases. For a visual inspec-
tion of the restoration performance of the proposed color
models we refer to Fig. 4.

Results on real images To demonstrate the practical sig-
nificance of the proposed network architecture, we further
report representative results on images obtained from [22],
which are distorted by real noise and whose distribution and
noise level are unknown. Since ground-truth images are not
available, the evaluation of the different methods is only
possible by visual comparisons. From Fig. 5 we observe
that as opposed to the rest of the methods, DCNN method
is completely incapable of removing the noise and of im-
proving the image quality. Regarding the performance of

the proposed networks, they lead to visually pleasing results
with most of the noise being removed and without introduc-
ing any spurious artifacts, as those present in the rest of the
methods under comparison. More results on real images
can be found in the Appendix.

6. Conclusions and Future Work

In this work we proposed a novel network architecture
for grayscale and color image denoising. The design of
the resulting image models has been inspired by local and
non-local variational methods and a constrained optimiza-
tion formulation of the problem, which allows us to train
our networks for a wide range of noise levels using a single
set of parameters. While the architecture of the proposed
networks is considerably more shallow than current state-
of-the-art deep CNN-based approaches, the resulting mod-
els lead to very competitive results for AWGN distortions
while they also appear to be very robust when the noise de-
grading the input deviates from the Gaussian assumption.

Based on the reported results using oracle grouping, a
promising future research direction that has the potential to
lead to further improvements in the restoration quality is to
investigate different block-matching approaches for finding
the similar patches used in the non-local variant of the pro-
posed network. Another direction that we plan to explore is
the use of the proposed networks as sub-solvers in restora-
tion methods that deal with more general inverse imaging
problems such as deblurring, inpainting, demosaicking, etc.



(a) Noisy image (σ = 8) (b) Noise Clinic [22] (c) BM3D [8]

(d) DCNN [42] (e) UDNet5 (f) UNLDNet5
Figure 6. Real grayscale image denoising. Images are best viewed magnified on a computer screen.

7. Appendix : Additional results on real images

In Figs. 6-10 we provide additional grayscale and color
image denoising results on images that have been dis-
torted by real noise, whose level and distribution are un-
known. Further, these images are quantized and their val-
ues are in the range [0, 255]. All the images are publicly
available and were obtained from [22], except to Fig. 6
which is available from https://en.wikipedia.
org/wiki/David_Hilbert. In our reported results
we compare 5 different methods that are all applicable both
to grayscale and color images. In particular, we consider

the method proposed in [22], which the authors refer to
as “noise clinic” and it was developed so that it can be
adapted to any signal dependent colored noise, the BM3D
algorithm [8], which has been the state-of-the-art Gaus-
sian denoising method for almost a decade and still leads
to very competitive results, DCNN [42], which is a deep
learning method that achieves the current state-of-the-art
performance in Gaussian denoising, and the two variants
(local and non-local) of our proposed denoising network.
Since ground-truth images do not exist, we cannot provide
any quantitative comparisons and the evaluation of the dif-

https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/David_Hilbert


(a) Noisy image (σ = 5) (b) Noise Clinic [22] (c) BM3D [8]

(d) DCNN [42] (e) UDNet5 (f) UNLDNet5
Figure 7. Real grayscale image denoising. Images are best viewed magnified on a computer screen.

ferent methods is only possible by a visual comparison of
their restoration results. It is also worth mentioning that all
the methods under comparison but the “noise clinic” have
been originally designed to deal with additive white Gaus-
sian noise (AWGN). Therefore, the main goal of our com-
parisons is to assess how robust each method is when the
noise deviates significantly from the assumed noise model.
Finally, we note that the noise clinic method and the DCNN
network are equipped with an internal mechanism to esti-

mate the noise level. On the other hand, the BM3D algo-
rithm and our proposed networks apart from the noisy in-
put, they accept a second input argument which corresponds
to the standard deviation of the noise, σ. For these three
methods, in our comparisons we have chosen empirically
the value of σ (we indicate this value in the caption of each
image) that led to the best restoration results.



(a) Noisy image (σ = 25) (b) Noise Clinic [22] (c) CBM3D [8]

(d) CDCNN [42] (e) CUDNet5 (f) CUNLDNet5
Figure 8. Real color image denoising. Images are best viewed magnified on a computer screen.
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